W Mass Measurement from CDF

Oliver Stelzer-Chilton (TRIUMF) On behalf of the CDF Collaboration

 \mathbb{P}

Vancouver, BC

Oliver Stelzer-Chilton

TRIUMF

Electroweak Precision Constraints

• Derive W mass from precisely measured electroweak quantities

$$m_W^2 = rac{\pi lpha_{em}}{\sqrt{2}G_F \sin^2 heta_W (1 - \Delta r)} \quad \sin heta_W^2 = 1 - rac{m_W^2}{m_Z^2}$$

 Radiative corrections ∆r dominated by top quark and Higgs loop ⇒allows constraint on Higgs mass

End 2011: W mass uncertainty 0.029% 23 MeV

• Progress on W mass uncertainty now has the biggest impact on Higgs mass constraint

Motivation from the Past

From precision measurements from LEP and SLC on the Z boson pole

- top quark loops in Z⁰

Precision measurements on Z pole constraint top quark mass before its discovery

Olivor	Stal	zor	Chi	Iton
Oliver	Siel	ZEI - 1		ILUI

W Boson Mass Introduction

 $m_T = \sqrt{2p_T^{\ l} p_T^{\ v} (1 - \cos \phi_{lv})}$

Use $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ events to derive recoil model

CDF Detector

Momentum Scale Calibration

- "Back bone" of CDF analysis is track p_{T} measurement in drift chamber (COT)
- Perform alignment using cosmic ray data: \sim 50µm \rightarrow \sim 5µm residual
- Calibrate momentum scale using samples of dimuon resonances $(J/\psi, Y, Z)$
 - Span a large range of p_{T}
 - Flatness is a test of dE/dx modeling
- Final scale error of 9×10^{-5} : $\Delta m_W = 7 \text{ MeV}$

L dt ~ 2.2 fb⁻¹

 $\Delta p/p = (-1.185 \pm 0.02_{...}) \times 10^{-3}$

 $\gamma^{2}/dof = 48 / 38$

CDF II preliminary

ents / 7.5 MeV 12000

10000

Energy Scale Calibration

Transfer momentum calibration to calorimeter using E/p distribution of electrons from W decay by fitting peak of E/p

p

E

Tune number of radiation lengths with E/p radiative tail

Correct for calibration E_T dependence

Tune resolution on E/p and Z mass peak

Excellent description of E/p tail Constraints overall material

Z Boson Masses

- Perform blinded measurement of Z mass using derived scales from independent samples
- Comparison to LEP value of M_Z = 91188 ± 2 MeV is a powerful cross-check of the calibration
- After unblinding, M_Z added as further calibration to both p- and E-scales

end energy scale $\Delta M_W = 10 \text{ MeV}$

Hadronic Recoil

Recoil definition:

- → Energy vector sum over all calorimeter towers, excluding:
 - lepton towers

- Measured recoil:
 - hard recoil from hadronic activity in W/Z event
 - underlying event/spectator interaction energy
- Tune using Z and minimum-bias data
- Validate using measured recoil in W events

Recoil Model

- Project vector sum of $p_{\tau}(II)$ and u on orthogonal axes defined by lepton directions
- Use Z balancing to calibrate recoil energy scale
- Mean and RMS of projections as a function of $p_{T}(II)$ provide information for model parameters

Hadronic model parameters tuned by minimizing χ^2 between data and simulation

 $\Delta M_{W} = 9 \text{ MeV}$

Parton Distribution Functions

Limited lepton acceptance produces dependence on PDFs

Evaluated with CTEQ and MSTW eigenvectors ΔM_{W} = 10 MeV

∆ MW (MeV/c²)

Signal Simulation

• Generator-level input for W&Z simulation provided by RESBOS [Balazs *et.al.* PRD56, 5558 (1997)]

Custom fast simulation makes smooth, high statistics templates

Extract the W mass from fit to: m_T , p_T and E_T^{miss} distributions in muon and electron decay channel

Blind Analysis

All W and Z mass fit results were blinded with a random [-75,75] MeV offset hidden in the likelihood fitter

Blinding offset removed after the analysis was declared frozen

Technique allows to study all aspects of data while keeping Z mass and W mass result unknown within 75 MeV

Fit Results

Oliver Stelzer-Chilton

15

Systematic Uncertainties

New CDF Result (2.2 fb⁻¹) Transverse Mass Fit Uncertainties (MeV)

	electrons	muons	common
W statistics	19	16	0
Lepton energy scale	10	7	5
Lepton resolution	4	1	0
Recoil energy scale	5	5	5
Recoil energy resolution	7	7	7
Selection bias	0	0	0
Lepton removal	3	2	2
Backgrounds	4	3	0
pT(W) model	3	3	3
Parton dist. Functions	10	10	10
QED rad. Corrections	4	4	4
Total systematic	18	16	15
Total	26	23	

Systematic uncertainties shown in green: statistics-limited by control data samples

Oliver	Ste	zer-	Chi	Itor

Uncertainty Scaling

Results: W Mass Combination

Previous world average: 80398 ± 23 MeV

New CDF result is significantly more precise than previous world average $M_W = 80387 \pm 12_{stat} \pm 15_{syst}$ MeV = 80387 ± 19 MeV

Results: Higgs Constraints

Oliver Stelzer-Chilton

Conclusion

New CDF result is significantly more precise than previous world average $M_W = 80387 \pm 19 \text{ MeV}$

The W boson mass will continue to play An important role as a stress test of the Standard Model.

Direct and Indirect M_W

Recoil Checks

Oliver Stelzer-Chilton

TRIUMF

SUSY

Oliver Stelzer-Chilton

TRIUMF

23