

Run Number: 183780, Event Number: 72206332 Date: 2011-06-21, 05:40:02 CET Cells:Tiles, EMC Collection:e/g

Searches for Di-Lepton Resonances at ATLAS

Oliver Stelzer-Chilton (TRIUMF) on behalf of the ATLAS Collaboration BSMLHC Sep 19 - 23, 2011 Trieste, Italy

Outline

Motivation

- High-p_T Leptons
- Selection
- Backgrounds
- Fitting Strategy
- Systematics
- Discovery Statistics
- Limits

🗆 Outlook

Search for Narrow Resonances

A resonance decaying to dileptons can have spin 0, 1, or 2

Spin 0

No fundamental scalar particle yet observed
 Higgs branching ratio to dileptons O(10⁻⁴)
 Sneutrino resonance possible if *R*-parity violated

Spin 1

Many models predict new U(1) with neutral gauge boson Z'

🗆 Spin 2

Excited graviton resonances G* predicted by Randall-Sundrum model of warped extra dimensions

Z' Production (spin 1)

Benchmark model: Sequential Standard Model
 But not motivated

```
□ GUT inspired E6 model

E_6 \rightarrow SO(10) \times U(1)_{\psi}

\rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}

\rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{\chi} \times U(1)_{\psi}

\rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)'

\rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y
```

Assume EWK-scale U(1)' is a linear combination of U(1)_χ × U(1)_ψ
 Generic U(1)' can be expressed in terms of θ
 Z'(θ) = Z_ψ' cos(θ) + Z_χ' sin (θ)
 Z_ψ', Z_N', Z_χ' Z_η', Z_I', Z_S'

Graviton G* Production (spin 2)

Randall-Sundrum

- Warped extra dimension, exponential warp factor solves hierarchy problem
- Two branes, TeV and Planck
- Gravitons live everywhere
- SM confined to TeV brane
- Excited states of graviton wave function has big overlaps
 - Massive gravitons with EWK-strength couplings to SM particles on our brane
- Expect first excitation to be TeV scale
 Width proportional to (k / M_{Pl})²
 Narrow resonance for k / M_{Pl} ≤0.1

General Strategy

Calibrate detector resolution and scale

Determine scanning procedure, evaluate p-value

Understand background evaluate systematics

Interpret results from data

High p_T Lepton Resolutions

Electrons:

□ Isolated energy deposition in the EM calorimeter

$$\frac{\sigma(E)}{E} = \frac{k_1}{\sqrt{E}} + \frac{k_2}{\sqrt{E}}$$

For high energy electrons, resolution dominated by constant term k₂ which is 1.2% in the barrel and 1.8% in the endcap

Muons:

Use combined tracks from Inner Detector and Muon Spectrometer
 At high p_T, curvature resolution dominated by intrinsic/misalignment term S₂ which ranges from 0.15 TeV⁻¹ to 0.44 TeV⁻¹ (for η >2)

$$q/p_T \rightarrow (q/p_T)_{ini} + S_1 (q/p_T)_{ini} + \frac{S_2}{2}$$

Electron Selection

- \Box EM clusters with $E_T > 25$ GeV, $|\eta| < 2.47$
- Criteria on the transverse shower shape, the longitudinal leakage into the hadronic calorimeter
- □ Removal of transition region between barrel and endcap $1.37 < | \eta | < 1.52$
- Association to an inner detector track
- □ Calorimeter isolation for leading electron < 0.2 in cone Δ R of 0.2

Signal efficiency for 1.5 TeV Z' (Randall-Sundrum G*) 65% (69%)

Muon Selection

- Hit requirements in ID and MS Require 3 hits in all 3 muon stations to ensure optimal momentum resolution
- Combined muons with $p_T > 25 \text{ GeV}$
- Impact parameter cus: |d0| < 0.2 mm and z0 wrt PV < 1.0 mm</p>
- □ Relative track isolation < 0.05 in cone ΔR of 0.3
- Muons of opposite charge

Signal efficiency for 1.5 TeV Z' (Randall-Sundrum G*) 40% (44%)

Signal and Backgrounds

Z' and G* signal simulated using Pythia

- Backgrounds simulated using:
 - \Box Pythia (Z/ γ *)
 - □ Alpgen (W+Jets)
 - □ Herwig (WW, WZ, ZZ)
 - MC@NLO (ttbar)
- □ Apply k-factors to MC cross-sections
- Data-driven backgrounds for QCD

$m_{e^+e^-}[\text{GeV}]$	70-110	110-200	200-400	400-800	800-3000
DY	258482 ± 410	5449 ± 180	613 ± 26	53.8 ± 3.1	2.8 ± 0.1
$t ar{t}$	218 ± 36	253 ± 10	82 ± 3	5.4 ± 0.3	0.1 ± 0.0
$\operatorname{Diboson}$	368 ± 19	85 ± 5	29 ± 2	3.1 ± 0.5	0.3 ± 0.1
W+jets	150 ± 100	150 ± 26	43 ± 10	4.6 ± 1.8	0.2 ± 0.4
QCD	332 ± 59	191 ± 75	36 ± 29	1.8 ± 1.4	< 0.05
Total	259550 ± 510	6128 ± 200	803 ± 40	68.8 ± 3.9	3.4 ± 0.4
Data	259550	6117	808	65	3
$m_{\mu^+\mu^-}$ [GeV]	70-110	110-200	200-400	400-800	800-3000
DY	236319 ± 320	5171 ± 150	483 ± 22	40.3 ± 2.5	2.0 ± 0.3
$tar{t}$	193 ± 21	193 ± 20	63 ± 6	4.2 ± 0.4	0.1 ± 0.0
Diboson	307 ± 16	69 ± 5	25 ± 2	1.7 ± 0.5	< 0.05
W+jets	1 ± 1	1 ± 1	< 0.5	< 0.05	< 0.05
QCD	1 ± 1	< 0.5	< 0.5	< 0.05	< 0.05
Total	236821 ± 487	5434 ± 150	571 ± 23	46.1 ± 2.6	2.1 ± 0.3
Data	236821	5406	557	51	5

QCD Background

- Sources for electron channel
 - Photon conversions
 - Semi-leptonic heavy quark decays
 - Hadrons faking electrons
- Estimates from three methods
 - Reversed electron identification
 - Isolation fit techniques
 - Fake rates from jet samples
- Source for muon channel
 - Semi-leptonic decays of b and c quarks
 - Kaons and Pions decays In flight
- Estimate from muon isolation variable
 Found to be negligible

Oliver Stelzer-Chilton (TRIUMF)

Drell-Yan Background

- Cut on reducible backgrounds so that Z/γ^{*} dominates SM expectation in entire search region
 - Predicted using PYTHIA with a mass dependent NNLO multiplicative k-factor correction from PHOZPR
 - Apply same k-factor Z' signal

Fitting Strategy

□ Normalization to the Z peak $\sigma_{z'} = \sigma_{z} * N_{z'}/N_{z} * A_{z}/A_{z'}$

Removes mass-independent systematics

Remaining dominant systematics

C.	1.1	4	1	•	
Source	dielectrons		dimuons		
	signal	background	signal	background	
Normalization	5%	NA	5%	NA	
$PDFs/\alpha_S$	\mathbf{NA}	10%	NA	10%	
QCD K-factor	\mathbf{NA}	3%	NA	3%	
Weak K-factor	\mathbf{NA}	4.5%	NA	4.5%	
Trigger/Reconstruction	negligible	negligible	4.5%	4.5%	
Total	5%	11%	7%	12%	

No systematics applied to signal

Discovery Statistics

2D fit for M_{z'} and $\sigma_{z'}$ using finely binned fully simulated signal lineshapes and naturally includes trials factor

- Outcome is ranked using a likelihood ratio
- \Box Resulting p-values: 54% (ee) and 24% ($\mu \mu$)

Run Number: 183780, Event Number: 72206332 Date: 2011-06-21, 05:40:02 CET Cells:Tiles, EMC Collection:e/g

BLODINITY .

M=959 GeV

Z' Limits

□ 95% CL intervals on fitted σ (Z') converted into limits on $\sigma \cdot B(Z' \rightarrow II)$ using the cross-section ratio between Z/Z'

Resulting mass limits

		$E_6 Z$	' Mod	\mathbf{els}		Mode	<u>.</u>	e^+e^-	$\mu^{+}\mu^{-}$	ℓ^+	ℓ^{-}
Model/Coupling	Z'_{ψ} .	$Z'_{\rm N}$ Z'_{η}	Z'_I	$Z'_{ m S}$	Z'_{χ}	Z'ssm		1.70 (1.70)	$\frac{-1.61}{1.61}$ (1.61)	1.83	(1.83)
Mass limit $[TeV]$	1.49 1	$52 \ 1.5$	$4 \ 1.56$	1.60	1.64	- 2010					(1.00)

values in brackets indicated the expects limits

Randall-Sundrum Graviton Limits

Signal acceptance is larger for spin-2 RS Graviton, also parton luminosity effect is slightly smaller

Resulting mass limits

	RS Graviton			
Model/Coupling	$0.01 \ 0.03 \ 0.05 \ 0.1$			
Mass limit [TeV]	$0.71 \ 1.03 \ 1.33 \ 1.63$			

Model	e^+e^-	$\mu^+\mu^-$	$\ell^+\ell^-$		
G^*	$1.51 \ (1.50)$	1.45(1.44)	1.63(1.63)		

values in brackets indicated the expects limits

Outlook

Motivation to search for high mass resonances continues
 Field changing discoveries in the past

- During first year, LHC has entered new territory in resonance search
- Cross section limits at 95% C.L. are converted into mass limits
 - □ M_{Z'SSM} > 1.83 TeV
 - □ M_{Z' χ} > 1.64 TeV
 - □ M_{G*(k/Mpl=0.1)} > 1.63 TeV
 - □ M_{G*(k/Mpl=0.01)} > 0.71 TeV

arXiv:1108.1582 submitted to PRL

- Will double dataset at least four more times before shutdown
 - Discovery might be around the corner!

