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Figure 7. SPEs of proton 0h11/2 and 0g7/2 orbits on top of Sn
isotopes as functions of the neutron number N . The solid lines are
calculations with the tensor-force effect, whereas the dotted lines
are without it. Symbols are experimental data: fragmentation of
single-particle strength is considered for filled circles, while bare
levels are used for open symbols. Experimental data are from
Schiffer et al [15].

Only exchange processes in figure 5(b) contribute to VM

for the tensor force, while its direct contribution vanishes. The
same property holds for a spin–spin central interaction [9]. If
only exchange terms remain, the spin-coordinate part of the
T = 0 and 1 matrix elements are just opposite. Combining this
with (E⌧1 · E⌧2) in equation (5), one obtains

vT =0
m; j, j

0 = 3 ⇥ vT =1
m; j, j

0 , for j 6= j

0. (11)

Thus, the proton–neutron tensor monopole interaction is twice
as strong as the T = 1 interaction.

The tensor force is due to pion (⇡ ) exchange, but the rho
meson (⇢) contributes also. In the following, we use the ⇡+⇢

meson exchange potential [13]. The coupling constants are
taken from [14].

Here we present an example as to how the shell evolution
occurs due to the tensor force. This example is for the splitting
between proton 0h11/2 and 0g7/2 orbits on top of Sn isotopes
with changing neutron number. The strength distribution of
these single-particle states have been measured for some Sb
(Z = 51) isotopes by transfer reactions [15]. Figure 7 shows
a comparison between theoretical results and experimental
ones. The theoretical calculations have been performed by
two methods: (i) with central and tensor forces, and (ii) with
central forces only. We used the central force to be explained
in the next section. The calculation was done for the changes
of (effective) SPE. We take the experimental energies at
N = 64 as the origin, and see the changes from there. As
the neutron number increases, the proton 0h11/2 and 0g7/2

orbits start to repel each other. The calculation only with
the central force keeps this 0h11/2–0g7/2 gap unchanged or
even reduces it. On the other hand, once the tensor force
is included, the repulsion between 0h11/2 and 0g7/2 orbits is
obtained quite well without any adjustment. This is the first
example indicating the shell evolution due to the tensor force.
We shall come back to this in the next section.

5. Shell evolution due to the central and tensor
forces

We analyze, in this section, the monopole interaction of major
shell-model interactions that describe experimental data very
well, making anatomy of it in terms of central and tensor
forces.

Figure 8(a) shows vm; j, j

0 for isospin T = 0 from the
GXPF1A interaction, the G-matrix interaction [17, 18] and
the tensor force in the pf-shell. The tensor force refers, as
already mentioned, to the ⇡+⇢ meson exchange force. The
orbits ( j, j

0) are grouped as (f, f), (p, p) and (f, p). In
figure 8(a), we find two distinct kinks in the tensor-force
values for the (f, f) and the (p, p) groups, and the same kinks
appear also in the GXPF1A and the G-matrix results. Note
that each kink is a consequence of the general rule suggested
in the previous section with figure 6. The similarities are
remarkable. To shed more light on this, in figure 8(b) we
subtract the tensor-force contribution from the GXPF1A and
the G-matrix values. This results in almost flat curves. The
(f, f) and (p, p) cases show almost the same values, while
the (f, p) shows higher (i.e., small absolute magnitude) but
still nearly flat values. This can be understood in terms
of radial integral of the central force: in the former case
the radial wave functions are the same between j and j

0,
while they are different in the latter. The flatness suggests
a longer-range central force. In order to incorporate these
features, we introduce a central Gaussian interaction as

Vc =
X

S,T

f

S,T P

S,T exp (�(r/µ)2), (12)

where S(T ) means spin (isospin), P denotes the projection
operator onto the channels (S, T ), and f , r and µ

stand for the strength, internucleon distance and Gaussian
parameter, respectively. Figure 8(b) shows results obtained
by f0,0 = f1,0 = 166 MeV and µ = 1.0 fm. The agreement
with GXPF1A is remarkable, considering the simplicity of
the model. Thus, we can describe the monopole component
by two simple terms: the tensor force generates ‘local’
variations, while the Gaussian central force produces a flat
‘global’ contribution. It is worth mentioning that µ = 1.0
fm is reasonable from the viewpoint of NN interaction, and
deviations from it, including the zero-range limit, worsen the
agreement.

Figure 8(c) shows vm for T = 1. They are grouped for
pairs of j = j

0 and the rest. The former corresponds to the
standard BCS-type pairing cases. We first stress that the basic
scale is quite different between T = 0 and 1: vm of GXPF1A
are in the range �2.5 ⇠ �1 MeV for T = 0, whereas for T =
1 they are in the range �0.3 ⇠ 0.2 MeV. The sharp rise for
j = j

0 = p1/2 occurs in all three interactions as a characteristic
fingerprint of the tensor force. Note that vm for the GXPF1A
interaction (G-matrix) are mostly repulsive (attractive) for
j 6= j

0. We subtract the tensor contribution as was done in
figure 8(b), and show the result in figure 8(d) as well as
those of the Gaussian central force with f0,1 = 0.6f0,0 and
f1,1 = �0.8f0,0. The basic feature can be reproduced, apart
from some deviations in the (f, f) cases, which may indicate
stronger pairing correlations.
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FIG. 2.7: The simple picture for proton j orbits and neutron j′ orbit. Note that the shift of effec-
tive single particle energies are exaggerated, the absolute values of tensor forces are not as large as
depicted in this figure.

2.4.2 Renormalization Persistency of tensor force

We have shown the importance of tensor force in nuclear structure so far. Before discussing
shell-model interaction obtained from chiral EFT, it must be noted that tensor force has characteristic
feature, Renormalization Persistency.

To put it simply, tensor forces in free-space interaction are rarely affected by the procedures to
construct shell-model effective interaction in a model space, softening (2. in the recipe) and renor-
malizion (5. in the recipe). This Renormalization Persistency for tensor force was firstly discussed in
[20], and it was extended to SRG evolution and three-nucleon forces [21] (in preparation). The fact
that MBPT does not change tensor component means that the first term in Eq. (2.36) is dominant for
tensor component. It is understood by the analysis in Ref. [20]. We will revisit this Renormalization
Persistency in terms of chiral effective field theory in Sec. 4.7.
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case that a nucleon on j< is interacting with another on j

0
>

through the tensor force. The total spin must be S = 1. We
assume that the total spin is up, and therefore the spin of
each nucleon is also up. The orbital motion of two nucleons
then should be opposite as shown in figure 6(a). We discuss
the relative motion of the two interacting nucleons, as the
interaction between them is relevant only to their relative
motion but not to their center-of-mass motion. We model the
relative motion by linear motion on the x-axis of two free
nucleons (i.e. plane waves). This modeling is reasonable for
the interaction with the range shorter than the scale of the
orbital motion, which should be the case now. In figure 6(a),
this means that the motion in the yellow-colored region, ‘wave
function of relative motion’, is described as a linear motion
on the x-axis being the horizontal direction on the plane of
this paper. Clearly the two nucleons are coming from the
opposite directions on the x-axis. We assign indexes 1 and
2 to the two nucleons. Their wave numbers are k1 and k2,
while their coordinates are denoted by x1 and x2. The wave
function, 9, consists of products of two plane waves. We take
a system of a proton and a neutron in total isospin T = 0.
The antisymmetrization is imposed. Because of S = 1, the
coordinate wave function must be symmetric as,

9 / eik1x1 eik2x2 + eik2x1 eik1x2 = eiK X {eikx + e�ikx }
= 2 eiK X cos(kx), (6)

where center-of-mass and relative momenta are defined,
respectively, as,

K , k = k1 ± k2, (7)

and center-of-mass and relative coordinates are likewise as,

X, x = (x1 ± x2)/2. (8)

From these equations, we see that the relative motion is
expressed by the wave function

�(x) / cos(kx), (9)

and the center-of-mass motion has a wave number K .
In the case of figure 6(a), assuming k1 ⇠ �k2, we obtain

K ⇠ 0, the center-of-mass being almost at rest, meaning a
nearly uniform wave function of the center-of-mass motion.
On the other hand, the relative motion has a large momentum,
k ⇠ 2 k1. Based on Fermi momentum in nuclei, k is considered
to be of the order of magnitude 1 fm�1, but not to exceed
⇠1.5 fm�1. From the range of the force, the area inside
x ⇠ 1 fm is relevant. Thus, the relevant region of kx in
equation (9) is within |kx | ⇠ ⇡/2. The wave function in
equation (9) is damped more quickly with |x | in this region
for k larger. Because of this damping, the wave function
of the relative motion relevant to the effects of the tensor
force is suppressed on the x-axis. We now come back from
one-dimensional modeling to the orbital motion. A similar
damping of the relative-motion wave function occurs as
shown by the yellow area in figure 6(a), implying that the
relevant part of the wave function has a shape suppressed in
the direction of the orbital motion, or equivalently stretched in
the direction of the total spin. This is similar to the deuteron,
and we obtain attractive effect from the tensor force robustly.

In the case of figure 6(b), the center-of-mass moves fast
with K large. On the other hand, k ⇠ 0 is obtained, implying

a stretched wave function of the relative motion on the x-axis.
In this case, the two nucleons are more apart from each other
in the direction perpendicular to the total spin, as indicated by
the yellow area in figure 6(b). The tensor force then produces
a repulsive effect.

Thus, we obtain a robust picture that j< and j

0
> (or vice

versa) orbits attract each other, whereas j> and j

0
> (or j<

and j

0
<) repel each other. Note that the essence of the above

one-dimensional explanation can be understood in terms of
Heisenberg’s uncertainty principle.

The coordinate wave function is symmetric in the above
argument, corresponding to the coupling between S and D
waves of the relative motion. If the total isospin is T = 1,
the antisymmetric coordinate wave function is taken,
corresponding to P waves. In this case, the wave function
in equation (9) is replaced by sin(kx). This wave function
produces a horizontally stretched wave function, reversing the
above argument for the case in figure 6(a). However, because
of the isospin dependence, there is another sign change,
producing an attractive effect totally. Thus, j>– j

0
< and j<– j

0
>

couplings always give us an attractive effect, whereas j>– j

0
>

and j<– j

0
< couplings are repulsive.

The radial wave functions of the two orbits must be
similar in order to have a large overlap in the radial direction.
A narrow spacial distribution is favored in the radial direction,
in order to have a ‘deuteron-like’ shape. This is fulfilled if
the two orbits are both near the Fermi energy, because their
radial wave functions have rather sharp peaks around the
surface. If the radial distributions of the two orbits differ,
not only the overlap becomes smaller but also the relative
spacial wave function is stretched in the radial direction,
which is against the deuteron-like shape, making the effect
less pronounced. Note that for the same radial condition,
larger l and l

0 enhance the tensor monopole effect in general,
as their relative momentum becomes higher (see figure 6).

We have presented the intuitive explanation of the shell
evolution due to the tensor force. An identity on the monopole
interaction of the tensor force has been derived in [13],
showing a consistent result in a mathematical and rigorous
way. Namely, for the orbits j and j

0, the following identity
has been derived for the tensor force in [13],

(2 j> + 1) vT

m; j>, j

0 + (2 j< + 1) vT

m; j<, j

0 = 0, (10)

where T = 0 and 1, and j

0 is either j

0
> or j

0
<. Note that

this identity is in the isospin formalism, and can be applied
not only to cases like figure 5(a) but also to cases between
neutrons or between protons. The identity in equation (10)
can be proved by angular momentum algebra by summing
all spin and orbital magnetic substates for the given l. It is
assumed that the radial wave function is the same for j> and
j< orbits, which is exactly fulfilled in the harmonic oscillator
and practically so in other models if the orbits are well bound.
This identity does not hold if the single-particle state j>

or j< is identical to j

0 (as excluded in figure 5), because
the substate summation is affected by the isospin symmetry.
However, the actual monopole matrix elements follow the
relation in equation (10) semi-quantitatively. One can prove
that V

T

j, j

0 = 0 for j or j

0 = s1/2. Equation (10) suggests that
if both j> and j< orbits are fully occupied, their total tensor
monopole effect vanishes.
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FIG. 2.7: The simple picture for proton j orbits and neutron j′ orbit. Note that the shift of effec-
tive single particle energies are exaggerated, the absolute values of tensor forces are not as large as
depicted in this figure.

2.4.2 Renormalization Persistency of tensor force

We have shown the importance of tensor force in nuclear structure so far. Before discussing
shell-model interaction obtained from chiral EFT, it must be noted that tensor force has characteristic
feature, Renormalization Persistency.

To put it simply, tensor forces in free-space interaction are rarely affected by the procedures to
construct shell-model effective interaction in a model space, softening (2. in the recipe) and renor-
malizion (5. in the recipe). This Renormalization Persistency for tensor force was firstly discussed in
[20], and it was extended to SRG evolution and three-nucleon forces [21] (in preparation). The fact
that MBPT does not change tensor component means that the first term in Eq. (2.36) is dominant for
tensor component. It is understood by the analysis in Ref. [20]. We will revisit this Renormalization
Persistency in terms of chiral effective field theory in Sec. 4.7.
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Figure 7. SPEs of proton 0h11/2 and 0g7/2 orbits on top of Sn
isotopes as functions of the neutron number N . The solid lines are
calculations with the tensor-force effect, whereas the dotted lines
are without it. Symbols are experimental data: fragmentation of
single-particle strength is considered for filled circles, while bare
levels are used for open symbols. Experimental data are from
Schiffer et al [15].

Only exchange processes in figure 5(b) contribute to VM

for the tensor force, while its direct contribution vanishes. The
same property holds for a spin–spin central interaction [9]. If
only exchange terms remain, the spin-coordinate part of the
T = 0 and 1 matrix elements are just opposite. Combining this
with (E⌧1 · E⌧2) in equation (5), one obtains

vT =0
m; j, j

0 = 3 ⇥ vT =1
m; j, j

0 , for j 6= j

0. (11)

Thus, the proton–neutron tensor monopole interaction is twice
as strong as the T = 1 interaction.

The tensor force is due to pion (⇡ ) exchange, but the rho
meson (⇢) contributes also. In the following, we use the ⇡+⇢

meson exchange potential [13]. The coupling constants are
taken from [14].

Here we present an example as to how the shell evolution
occurs due to the tensor force. This example is for the splitting
between proton 0h11/2 and 0g7/2 orbits on top of Sn isotopes
with changing neutron number. The strength distribution of
these single-particle states have been measured for some Sb
(Z = 51) isotopes by transfer reactions [15]. Figure 7 shows
a comparison between theoretical results and experimental
ones. The theoretical calculations have been performed by
two methods: (i) with central and tensor forces, and (ii) with
central forces only. We used the central force to be explained
in the next section. The calculation was done for the changes
of (effective) SPE. We take the experimental energies at
N = 64 as the origin, and see the changes from there. As
the neutron number increases, the proton 0h11/2 and 0g7/2

orbits start to repel each other. The calculation only with
the central force keeps this 0h11/2–0g7/2 gap unchanged or
even reduces it. On the other hand, once the tensor force
is included, the repulsion between 0h11/2 and 0g7/2 orbits is
obtained quite well without any adjustment. This is the first
example indicating the shell evolution due to the tensor force.
We shall come back to this in the next section.

5. Shell evolution due to the central and tensor
forces

We analyze, in this section, the monopole interaction of major
shell-model interactions that describe experimental data very
well, making anatomy of it in terms of central and tensor
forces.

Figure 8(a) shows vm; j, j

0 for isospin T = 0 from the
GXPF1A interaction, the G-matrix interaction [17, 18] and
the tensor force in the pf-shell. The tensor force refers, as
already mentioned, to the ⇡+⇢ meson exchange force. The
orbits ( j, j

0) are grouped as (f, f), (p, p) and (f, p). In
figure 8(a), we find two distinct kinks in the tensor-force
values for the (f, f) and the (p, p) groups, and the same kinks
appear also in the GXPF1A and the G-matrix results. Note
that each kink is a consequence of the general rule suggested
in the previous section with figure 6. The similarities are
remarkable. To shed more light on this, in figure 8(b) we
subtract the tensor-force contribution from the GXPF1A and
the G-matrix values. This results in almost flat curves. The
(f, f) and (p, p) cases show almost the same values, while
the (f, p) shows higher (i.e., small absolute magnitude) but
still nearly flat values. This can be understood in terms
of radial integral of the central force: in the former case
the radial wave functions are the same between j and j

0,
while they are different in the latter. The flatness suggests
a longer-range central force. In order to incorporate these
features, we introduce a central Gaussian interaction as

Vc =
X

S,T

f

S,T P

S,T exp (�(r/µ)2), (12)

where S(T ) means spin (isospin), P denotes the projection
operator onto the channels (S, T ), and f , r and µ

stand for the strength, internucleon distance and Gaussian
parameter, respectively. Figure 8(b) shows results obtained
by f0,0 = f1,0 = 166 MeV and µ = 1.0 fm. The agreement
with GXPF1A is remarkable, considering the simplicity of
the model. Thus, we can describe the monopole component
by two simple terms: the tensor force generates ‘local’
variations, while the Gaussian central force produces a flat
‘global’ contribution. It is worth mentioning that µ = 1.0
fm is reasonable from the viewpoint of NN interaction, and
deviations from it, including the zero-range limit, worsen the
agreement.

Figure 8(c) shows vm for T = 1. They are grouped for
pairs of j = j

0 and the rest. The former corresponds to the
standard BCS-type pairing cases. We first stress that the basic
scale is quite different between T = 0 and 1: vm of GXPF1A
are in the range �2.5 ⇠ �1 MeV for T = 0, whereas for T =
1 they are in the range �0.3 ⇠ 0.2 MeV. The sharp rise for
j = j

0 = p1/2 occurs in all three interactions as a characteristic
fingerprint of the tensor force. Note that vm for the GXPF1A
interaction (G-matrix) are mostly repulsive (attractive) for
j 6= j

0. We subtract the tensor contribution as was done in
figure 8(b), and show the result in figure 8(d) as well as
those of the Gaussian central force with f0,1 = 0.6f0,0 and
f1,1 = �0.8f0,0. The basic feature can be reproduced, apart
from some deviations in the (f, f) cases, which may indicate
stronger pairing correlations.
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38 Chapter. 4 Shell-model interactions from chiral EFT

4.4 Contributions from chiral 3NFs

In this section, we show the 3NF contributions in the form of effective 2NFs within the Fermi
gas approximation. In what follows, we refer to density-dependent nucleon-nucleon interaction as
simply “3n”, to clarify the difference from genuine 3NF. As we introduced in Sec. 3.4.2, 3n consists
of TPE(1-3), OPE(4-5), and CON(6) contributions. The low energy constants associated with TPE are
determined by scattering data at 2NF sector and cD and cE are determined by experimental information
of few-body system. It is known that cD and cE have much uncertainty. These LECs should be
evaluated consistently within employed 2NF, cutoff parameter, regularization scheme, and few-body
quantities. Here we assume the validity of the usage of cD and cE in [44], cD = −0.20 and cE = −0.205.
We also show the case for other values from [45], cD = −2.06 and cE = −0.63, to investigate the
influence of uncertainty of cD and cE. In fact, as we discuss later, 3n contributions to shell-model
interactions are not sensitive to these choices. It also should be noted that we employ, through this
thesis, the non-local regulator of the form exp

[
−(p′/Λ3N)6 − (p/Λ3N)6

]
and Λ3N = 500 MeV for 3n.

Therefore, the difference between EM 3n and EGM 3n lies only in LECs (c3 and c4), which reflects
the difference of 2NFs themselves. On the other hand, LEC c1 in TPE is the same between EM and
EGM.

The symbols in following figures are summarized in Table 4.4. Vertical lines colored red and blue
in figures indicate ρ dependence which is introduced by Fermi gas approximation to fold one nucleon
leg. The density ρ is increased from ρ0/2 to 2ρ0, and horizontal lines are depicted at ρ = 2ρ0.

Table 4.4: Summary of symbols in following figures.
chiral EFT (in sd and p f shell)

3n at ρ = ρ0 (with cD, cE [44]) EGM• EM•
3n at ρ = ρ0 (with cD, cE [45]) EGM! EM!

Central

Central force in 3NFs is also literally central component of nuclear forces. Historically, there
are many suggestion both from theories and experiments that the contribution of three-nucleon forces
in medium-heavy region is repulsive effect. It has revealed from theoretical point of view [46] that
repulsive contributions from 3NF play a crucial role to account for neutron drip line, namely the limit
of how many neutrons a given number of protons can bind, for oxygen isotopes.

In FIGs. 4.7 and 4.8, we show the central monopole strength in sd and p f shell. The reddish
(red/orange) symbols denote EGM and bluish (blue/green) ones are EM. We can hardly distinguish
between circles (cD and cE from [44]) and diamonds (cD and cE from [45]). From these figures, we
expect that the contribution of 3n largely comes from not OPE and CON, but TPE contribution. As
we already mentioned, the difference between reddish ones (EGM) and bluish ones (EM) reflects the
difference of c3 and c4. In any cases, we can see that central component of 3n show repulsive character

state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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(d)  Schematic picture of two-
       valence-neutron interaction
       induced from 3N force

FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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FIG. 2.2: The schematic picture of magic number up to 5th major shell. Strong spin-orbit force leads
to spin-orbit splitting.

2.1.1 Basic concepts of nuclear shell model

In 1949, Maria Goeppert Mayer and Johannes Hans Daniel Jensen developed basics of nuclear
shell model. They found that the nucleons in nuclei also have shell structure like electrons in atoms,
that is, nuclei with 2, 8, 20, 28, 40, 50, 82 or 126 neutrons or protons are particularly stable. These
particular number of nucleons are often called as magic numbers in nuclear physics. They pointed
out the origin of magic numbers is spin-orbit splitting of one-body potential by introducing spin-orbit
force into harmonic oscillator potential. This concept opened a new era of nuclear structure physics,
then they won a Novel Prize in 1963. The schematic figure of magic number is shown in FIG. 2.2.
These magic numbers had been considered as rigid character of nuclei since the work by Mayer and
Jensen. However, it has turned out by recent development in experimental facilities and shell-model
studies that these magic numbers are no longer rigid property in exotic nuclei. Namely the appearance
or disappearance of magic numbers can occur in the region far from stability line in the nuclear chart.
See, for example, [2] or [3]. We will revisit this topic, changing magic numbers, in Sec. 2.4.1.

The nuclear shell model can be formulated by following Hamiltonian in a second quantized form,

H =
∑

i

Eia†i ai +
∑

i jkl

Vi j,kl a†i a†jakal, (2.1)

where Ei is single-particle energy (SPE), Vi j,kl is two-body matrix element (TBME), a†i (ai) is the
creation (annihilation) operator with a particle in the single-particle orbit i, respectively. Of course
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The	robustness	of	tensor	forces

pf	shell→↓ sd shell

・gas	(red	bands) :	density-dependent	
・NO2B♦ :normal	ordering	w.r.t.

16O(sd)	and	40Ca(pf)

angular	averaged	tensor	force	in
neutron-proton	interaction	

VMU:	embodies	shell	evolution
T.	Otsuka	et	al.	PRL. 95,	232502	(2005);	

104,	012501	(2010)	

tensor	force	in	chiral	forces	is	
consistent	with	that	of	VMU(π+ρ)

important	for	
N=34	magic	number	in	Ca
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FIG. 2.7: The simple picture for proton j orbits and neutron j′ orbit. Note that the shift of effec-
tive single particle energies are exaggerated, the absolute values of tensor forces are not as large as
depicted in this figure.

2.4.2 Renormalization Persistency of tensor force

We have shown the importance of tensor force in nuclear structure so far. Before discussing
shell-model interaction obtained from chiral EFT, it must be noted that tensor force has characteristic
feature, Renormalization Persistency.

To put it simply, tensor forces in free-space interaction are rarely affected by the procedures to
construct shell-model effective interaction in a model space, softening (2. in the recipe) and renor-
malizion (5. in the recipe). This Renormalization Persistency for tensor force was firstly discussed in
[20], and it was extended to SRG evolution and three-nucleon forces [21] (in preparation). The fact
that MBPT does not change tensor component means that the first term in Eq. (2.36) is dominant for
tensor component. It is understood by the analysis in Ref. [20]. We will revisit this Renormalization
Persistency in terms of chiral effective field theory in Sec. 4.7.

�Shell	evolution	due	to	the	tensor	force

central	 :	parallel	shift
tensor :	widen/reduce
spin-orbit :	widen (small)

As	N	increases,	
single	particle	energies	(SPEs)	evolve	[1]	

Phys. Scr. T152 (2013) 014007 T Otsuka
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Figure 7. SPEs of proton 0h11/2 and 0g7/2 orbits on top of Sn
isotopes as functions of the neutron number N . The solid lines are
calculations with the tensor-force effect, whereas the dotted lines
are without it. Symbols are experimental data: fragmentation of
single-particle strength is considered for filled circles, while bare
levels are used for open symbols. Experimental data are from
Schiffer et al [15].

Only exchange processes in figure 5(b) contribute to VM

for the tensor force, while its direct contribution vanishes. The
same property holds for a spin–spin central interaction [9]. If
only exchange terms remain, the spin-coordinate part of the
T = 0 and 1 matrix elements are just opposite. Combining this
with (E⌧1 · E⌧2) in equation (5), one obtains

vT =0
m; j, j

0 = 3 ⇥ vT =1
m; j, j

0 , for j 6= j

0. (11)

Thus, the proton–neutron tensor monopole interaction is twice
as strong as the T = 1 interaction.

The tensor force is due to pion (⇡ ) exchange, but the rho
meson (⇢) contributes also. In the following, we use the ⇡+⇢

meson exchange potential [13]. The coupling constants are
taken from [14].

Here we present an example as to how the shell evolution
occurs due to the tensor force. This example is for the splitting
between proton 0h11/2 and 0g7/2 orbits on top of Sn isotopes
with changing neutron number. The strength distribution of
these single-particle states have been measured for some Sb
(Z = 51) isotopes by transfer reactions [15]. Figure 7 shows
a comparison between theoretical results and experimental
ones. The theoretical calculations have been performed by
two methods: (i) with central and tensor forces, and (ii) with
central forces only. We used the central force to be explained
in the next section. The calculation was done for the changes
of (effective) SPE. We take the experimental energies at
N = 64 as the origin, and see the changes from there. As
the neutron number increases, the proton 0h11/2 and 0g7/2

orbits start to repel each other. The calculation only with
the central force keeps this 0h11/2–0g7/2 gap unchanged or
even reduces it. On the other hand, once the tensor force
is included, the repulsion between 0h11/2 and 0g7/2 orbits is
obtained quite well without any adjustment. This is the first
example indicating the shell evolution due to the tensor force.
We shall come back to this in the next section.

5. Shell evolution due to the central and tensor
forces

We analyze, in this section, the monopole interaction of major
shell-model interactions that describe experimental data very
well, making anatomy of it in terms of central and tensor
forces.

Figure 8(a) shows vm; j, j

0 for isospin T = 0 from the
GXPF1A interaction, the G-matrix interaction [17, 18] and
the tensor force in the pf-shell. The tensor force refers, as
already mentioned, to the ⇡+⇢ meson exchange force. The
orbits ( j, j

0) are grouped as (f, f), (p, p) and (f, p). In
figure 8(a), we find two distinct kinks in the tensor-force
values for the (f, f) and the (p, p) groups, and the same kinks
appear also in the GXPF1A and the G-matrix results. Note
that each kink is a consequence of the general rule suggested
in the previous section with figure 6. The similarities are
remarkable. To shed more light on this, in figure 8(b) we
subtract the tensor-force contribution from the GXPF1A and
the G-matrix values. This results in almost flat curves. The
(f, f) and (p, p) cases show almost the same values, while
the (f, p) shows higher (i.e., small absolute magnitude) but
still nearly flat values. This can be understood in terms
of radial integral of the central force: in the former case
the radial wave functions are the same between j and j

0,
while they are different in the latter. The flatness suggests
a longer-range central force. In order to incorporate these
features, we introduce a central Gaussian interaction as

Vc =
X

S,T

f

S,T P

S,T exp (�(r/µ)2), (12)

where S(T ) means spin (isospin), P denotes the projection
operator onto the channels (S, T ), and f , r and µ

stand for the strength, internucleon distance and Gaussian
parameter, respectively. Figure 8(b) shows results obtained
by f0,0 = f1,0 = 166 MeV and µ = 1.0 fm. The agreement
with GXPF1A is remarkable, considering the simplicity of
the model. Thus, we can describe the monopole component
by two simple terms: the tensor force generates ‘local’
variations, while the Gaussian central force produces a flat
‘global’ contribution. It is worth mentioning that µ = 1.0
fm is reasonable from the viewpoint of NN interaction, and
deviations from it, including the zero-range limit, worsen the
agreement.

Figure 8(c) shows vm for T = 1. They are grouped for
pairs of j = j

0 and the rest. The former corresponds to the
standard BCS-type pairing cases. We first stress that the basic
scale is quite different between T = 0 and 1: vm of GXPF1A
are in the range �2.5 ⇠ �1 MeV for T = 0, whereas for T =
1 they are in the range �0.3 ⇠ 0.2 MeV. The sharp rise for
j = j

0 = p1/2 occurs in all three interactions as a characteristic
fingerprint of the tensor force. Note that vm for the GXPF1A
interaction (G-matrix) are mostly repulsive (attractive) for
j 6= j

0. We subtract the tensor contribution as was done in
figure 8(b), and show the result in figure 8(d) as well as
those of the Gaussian central force with f0,1 = 0.6f0,0 and
f1,1 = �0.8f0,0. The basic feature can be reproduced, apart
from some deviations in the (f, f) cases, which may indicate
stronger pairing correlations.

7

� Conditions	for	shell-model	effective	interaction

How	about	chiral	forces	?

The	concept	of	shell	evolution	has	
been	understood	by	π+ρ tensor	force
c.f. [1]	T.	Otsuka	et	al.,	PRL	104,	012501	(2010).

[2]	T.	Otsuka,	Phys.	Scr T152 (2013)	014007.
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� Results:	the	strength	of	tensor	forces	(neutron-proton)

� How	to	handle	3NF

state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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(d)  Schematic picture of two-
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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e.g.,	

Int.	a)

3.4 Effective nucleon-nucleon interaction from chiral 3NFs 27

to introduce softening procedure to 3NF. It is one of the advantages of this approximation. I and
coworkers are working along this direction now and we will compare it with following procedure and
investigate the validity of both procedure. It is obvious that we need to calculate original three-body
matrix elements, which requires a lot of computer resources, in order to obtain normal-ordered 3NF.

3.4.2 Fermi gas approximation

Another candidate to approximate 3NF is summing up one nucleon leg in the Fermi sea which
is defined with the assumption that spin and isospin are saturated and the upper limit of the third
nucleon’s momenta kF is determined by density ρ, e.g., normal nuclear density ρ0 = 0.16 fm−3.
The relation between kF and ρ is given by k3

F = 3π2ρ/2. This approximation was employed in, for
example, [38, 39]. Since it is laborious task to write down the each contribution in this approximation,
we show the explicit form only for TPE(3), which is the most complicated one to manipulate, in
Appendix A. Unlike the normal ordering, it preserves translational symmetry which nuclear forces
in free-space should have. Thus, we interpret this approximation as the correction to free-space NN
interaction. Moreover, once we write down the analytic form, we can calculate TBMEs for this
effective 2NFs as well as the genuine 2NFs. If this approximation is reasonable approximation equal
to or greater than normal ordering approximation, we can flee from the heavy calculations of three-
body matrix elements. However, the assessment of the validity of Fermi gas approximation for 3NF is
not straightforward. For example, it is not obvious whether we should take account of Pauli blocking
effect explicitly or not.

In any case, the validity of these two approximations will be verified by the actual calculation
about nuclear observables.

(1) (2) (3)

(4) (5) (6)

FIG. 3.5: Effective 2NF from TPE (1-3), OPE (4,5), and CON (6)

Int.	b)

Phys. Scr. T152 (2013) 014007 T Otsuka

case that a nucleon on j< is interacting with another on j

0
>

through the tensor force. The total spin must be S = 1. We
assume that the total spin is up, and therefore the spin of
each nucleon is also up. The orbital motion of two nucleons
then should be opposite as shown in figure 6(a). We discuss
the relative motion of the two interacting nucleons, as the
interaction between them is relevant only to their relative
motion but not to their center-of-mass motion. We model the
relative motion by linear motion on the x-axis of two free
nucleons (i.e. plane waves). This modeling is reasonable for
the interaction with the range shorter than the scale of the
orbital motion, which should be the case now. In figure 6(a),
this means that the motion in the yellow-colored region, ‘wave
function of relative motion’, is described as a linear motion
on the x-axis being the horizontal direction on the plane of
this paper. Clearly the two nucleons are coming from the
opposite directions on the x-axis. We assign indexes 1 and
2 to the two nucleons. Their wave numbers are k1 and k2,
while their coordinates are denoted by x1 and x2. The wave
function, 9, consists of products of two plane waves. We take
a system of a proton and a neutron in total isospin T = 0.
The antisymmetrization is imposed. Because of S = 1, the
coordinate wave function must be symmetric as,

9 / eik1x1 eik2x2 + eik2x1 eik1x2 = eiK X {eikx + e�ikx }
= 2 eiK X cos(kx), (6)

where center-of-mass and relative momenta are defined,
respectively, as,

K , k = k1 ± k2, (7)

and center-of-mass and relative coordinates are likewise as,

X, x = (x1 ± x2)/2. (8)

From these equations, we see that the relative motion is
expressed by the wave function

�(x) / cos(kx), (9)

and the center-of-mass motion has a wave number K .
In the case of figure 6(a), assuming k1 ⇠ �k2, we obtain

K ⇠ 0, the center-of-mass being almost at rest, meaning a
nearly uniform wave function of the center-of-mass motion.
On the other hand, the relative motion has a large momentum,
k ⇠ 2 k1. Based on Fermi momentum in nuclei, k is considered
to be of the order of magnitude 1 fm�1, but not to exceed
⇠1.5 fm�1. From the range of the force, the area inside
x ⇠ 1 fm is relevant. Thus, the relevant region of kx in
equation (9) is within |kx | ⇠ ⇡/2. The wave function in
equation (9) is damped more quickly with |x | in this region
for k larger. Because of this damping, the wave function
of the relative motion relevant to the effects of the tensor
force is suppressed on the x-axis. We now come back from
one-dimensional modeling to the orbital motion. A similar
damping of the relative-motion wave function occurs as
shown by the yellow area in figure 6(a), implying that the
relevant part of the wave function has a shape suppressed in
the direction of the orbital motion, or equivalently stretched in
the direction of the total spin. This is similar to the deuteron,
and we obtain attractive effect from the tensor force robustly.
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Thus, we obtain a robust picture that j< and j

0
> (or vice

versa) orbits attract each other, whereas j> and j

0
> (or j<

and j

0
<) repel each other. Note that the essence of the above

one-dimensional explanation can be understood in terms of
Heisenberg’s uncertainty principle.

The coordinate wave function is symmetric in the above
argument, corresponding to the coupling between S and D
waves of the relative motion. If the total isospin is T = 1,
the antisymmetric coordinate wave function is taken,
corresponding to P waves. In this case, the wave function
in equation (9) is replaced by sin(kx). This wave function
produces a horizontally stretched wave function, reversing the
above argument for the case in figure 6(a). However, because
of the isospin dependence, there is another sign change,
producing an attractive effect totally. Thus, j>– j

0
< and j<– j

0
>

couplings always give us an attractive effect, whereas j>– j

0
>

and j<– j

0
< couplings are repulsive.

The radial wave functions of the two orbits must be
similar in order to have a large overlap in the radial direction.
A narrow spacial distribution is favored in the radial direction,
in order to have a ‘deuteron-like’ shape. This is fulfilled if
the two orbits are both near the Fermi energy, because their
radial wave functions have rather sharp peaks around the
surface. If the radial distributions of the two orbits differ,
not only the overlap becomes smaller but also the relative
spacial wave function is stretched in the radial direction,
which is against the deuteron-like shape, making the effect
less pronounced. Note that for the same radial condition,
larger l and l

0 enhance the tensor monopole effect in general,
as their relative momentum becomes higher (see figure 6).

We have presented the intuitive explanation of the shell
evolution due to the tensor force. An identity on the monopole
interaction of the tensor force has been derived in [13],
showing a consistent result in a mathematical and rigorous
way. Namely, for the orbits j and j

0, the following identity
has been derived for the tensor force in [13],

(2 j> + 1) vT

m; j>, j

0 + (2 j< + 1) vT

m; j<, j

0 = 0, (10)

where T = 0 and 1, and j

0 is either j

0
> or j

0
<. Note that

this identity is in the isospin formalism, and can be applied
not only to cases like figure 5(a) but also to cases between
neutrons or between protons. The identity in equation (10)
can be proved by angular momentum algebra by summing
all spin and orbital magnetic substates for the given l. It is
assumed that the radial wave function is the same for j> and
j< orbits, which is exactly fulfilled in the harmonic oscillator
and practically so in other models if the orbits are well bound.
This identity does not hold if the single-particle state j>

or j< is identical to j

0 (as excluded in figure 5), because
the substate summation is affected by the isospin symmetry.
However, the actual monopole matrix elements follow the
relation in equation (10) semi-quantitatively. One can prove
that V

T

j, j

0 = 0 for j or j

0 = s1/2. Equation (10) suggests that
if both j> and j< orbits are fully occupied, their total tensor
monopole effect vanishes.

6

Tensor	monopole	interaction	obey[2],

T:	given	total	isospin,	m:	monopole

�Appendix:	the	validity	of	Int.	b)

bands	include	the	variety	of
�original	2NFs	(EM	500,	EGM	450/500,	
450/700,	500/600,	600/600,	600/700)
�ρ=	0.5ρ0 - 2ρ0 (ρ0=0.16	fm-3)	for	3NF
�λSRG=1.8-2.2	fm-1/Λlowk=2.1	fm-1

�cD =	-0.20	[3],	-4.38	[4]

c.f. [3]	D.	Gazit et	al.,	PRL	103,	102502	(2009).								
[4]	K.	Hebeler et al.,	PRC	83,	031301	(2011).

�Summary

Shell	evolution	due	to	the	tensor		force	
can	be	also	understood	by	chiral	forces	+	MBPT

for	a)	:	ħω =	12	MeV	(There	may	be	subtleties	with	SRG)	
λSRG =	2.0	fm-1

emax =	16		and	e3max	=	10	
for	b)	:	ħω =12	MeV

emax=	16,	30 ħω excitation	is	allowed
λSRG =	1.8	– 2.2	fm-1	or	Λlowk =	2.1fm-1

�Set	up

shell	model	effective	interaction
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2.1.1 Basic concepts of nuclear shell model

In 1949, Maria Goeppert Mayer and Johannes Hans Daniel Jensen developed basics of nuclear
shell model. They found that the nucleons in nuclei also have shell structure like electrons in atoms,
that is, nuclei with 2, 8, 20, 28, 40, 50, 82 or 126 neutrons or protons are particularly stable. These
particular number of nucleons are often called as magic numbers in nuclear physics. They pointed
out the origin of magic numbers is spin-orbit splitting of one-body potential by introducing spin-orbit
force into harmonic oscillator potential. This concept opened a new era of nuclear structure physics,
then they won a Novel Prize in 1963. The schematic figure of magic number is shown in FIG. 2.2.
These magic numbers had been considered as rigid character of nuclei since the work by Mayer and
Jensen. However, it has turned out by recent development in experimental facilities and shell-model
studies that these magic numbers are no longer rigid property in exotic nuclei. Namely the appearance
or disappearance of magic numbers can occur in the region far from stability line in the nuclear chart.
See, for example, [2] or [3]. We will revisit this topic, changing magic numbers, in Sec. 2.4.1.

The nuclear shell model can be formulated by following Hamiltonian in a second quantized form,

H =
∑

i

Eia†i ai +
∑

i jkl

Vi j,kl a†i a†jakal, (2.1)

where Ei is single-particle energy (SPE), Vi j,kl is two-body matrix element (TBME), a†i (ai) is the
creation (annihilation) operator with a particle in the single-particle orbit i, respectively. Of course
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There	still	remains	deficiencies	in	SPEs.
However,	once	we	employ	reasonable SPEs,
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a) 3NF(NO1B,	NO2B)	is	included	up	to	MBPT	1st order	
b) 3NF	is	considered	as	the	correction	to	initial	2NF	
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Tensor	forces	are	robust	against

14 Chapter. 2 Nuclear structure and nuclear force

which gives the flow equation,

dHs

ds
= [[Trel,Hs],Hs]. (2.9)

In this case, the flow equation in a given partial wave can be written as,

dVs(k, k′)
ds

= −(k2 − k′2)2Vs(k, k′) +
2
π

∫ ∞

0
q2dq(k2 + k′2 − 2q2)Vs(k, q)Vs(q, k′). (2.10)

For the matrix elements far from the diagonal in momentum space, the first term on the right hand side
of above equation dominates. As a result, we obtain the asymptotic behavior of the evolved potential,

Vs(k, k′) ≈ Vs=0(k, k′)e−s(k2−k′2)2
. (2.11)

It is convenient to introduce λ ≡ s−1/4, which has units of fm−1. FIG. 2.5 shows that the schematic
picture for two RG evolutions, Vlowk and SRG. For Vlowk each Λi is momentum cutoff and for SRG
each λi provides a measure for the width2 of the band-diagonal Hamiltonian in momentum space, that
is, it controls the scale of momentum transfer, |q⃗| = |⃗k ′ − k⃗| ! λ. At each Λ(λ), the matrix elements
outside the line are zero, as we can understand from the exponential factor in eq. (2.11).

k

k’

Λ0Λ1Λ2
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λ0 λ1 λ2

(a) Vlowk (b) SRG

FIG. 2.5: The schematic picture for two RG evolutions, Vlowk and SRG. The left panel (a) Vlowk
running in Λ and the right one (b) SRG running in λ. Here, k and k′ denote the relative momenta of
the initial and final state in center-of-mass frame, respectively. All cutoff parameter Λ2 < Λ1 < Λ0
and λ2 < λ1 < λ0 are in a unit of fm−1.

2More precisely, the width of diagonal band is order of λ2.
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Vlowk
1.	softening	procedure	(SRG/Vlowk)

not	sensitive	to	the	λ/Λ (natural)

2.	renormalization	procedure	(MBPT)

non-trivial	(summation	of	Q-box	diagrams)	

Renormalization	Persistency	
N.	Tsunoda	et	al.	PRC	84,	044322	(2011).

3.	the	way	to	fold	one	nucleon	leg	of	3NF	(Fermi	gas	/	N.O.	w.r.t.	the	core)

tensor	force	from	3NFs	enhances	original	2NFs,
but	not	large

Tensor	forces	are	robust	against,

c.f. [5]
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Vs(k, k′) ≈ Vs=0(k, k′)e−s(k2−k′2)2
. (2.11)

It is convenient to introduce λ ≡ s−1/4, which has units of fm−1. FIG. 2.5 shows that the schematic
picture for two RG evolutions, Vlowk and SRG. For Vlowk each Λi is momentum cutoff and for SRG
each λi provides a measure for the width2 of the band-diagonal Hamiltonian in momentum space, that
is, it controls the scale of momentum transfer, |q⃗| = |⃗k ′ − k⃗| ! λ. At each Λ(λ), the matrix elements
outside the line are zero, as we can understand from the exponential factor in eq. (2.11).

k

k’

Λ0Λ1Λ2

k

k’

λ0 λ1 λ2

(a) Vlowk (b) SRG

FIG. 2.5: The schematic picture for two RG evolutions, Vlowk and SRG. The left panel (a) Vlowk
running in Λ and the right one (b) SRG running in λ. Here, k and k′ denote the relative momenta of
the initial and final state in center-of-mass frame, respectively. All cutoff parameter Λ2 < Λ1 < Λ0
and λ2 < λ1 < λ0 are in a unit of fm−1.

2More precisely, the width of diagonal band is order of λ2.

Vlowk
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monopole	analysis	of	TBME	(Q-box)

Total T=0	part T=1	part
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