Shell evolution based on chiral nuclear force

Progress in Ab Initio Techniques in Nuclear Physics Feb 28 - Mar 3, 2017 @TRIUMF

Sota Yoshida

collaborators

M. Kohno (RCNP, Osaka) T. Miyagi (UT) T. Abe (UT) N. Tsunoda (CNS, UT)

T. Otsuka (UT) N. Shimizu (CNS, UT)

Special thanks

Petr Navrátil (TRIUMF)

Ragnar Stroberg (TRIUMF)

THE UNIVERSITY OF TOKYO

Materials Education program for the future leaders in Research, Industry, and Technology

Shell evolution due to the tensor force

Shell evolution due to the tensor force

FIG. from Phys. Scr. **T152** (2013) 014007 T. Otsuka

based on $\underline{\pi+\rho}$ tensor

How about chiral forces ?

Figure 7. SPEs of proton $0h_{11/2}$ and $0g_{7/2}$ orbits on top of Sn isotopes as functions of the neutron number *N*. The solid lines are calculations with the tensor-force effect, whereas the dotted lines are without it. Symbols are experimental data: fragmentation of single-particle strength is considered for filled circles, while bare levels are used for open symbols. Experimental data are from Schiffer *et al* [15].

The wide variety of NN/NNN in chiral EFT

EM : $\Lambda = 500, \frac{600}{MeV}$ EGM : $\Lambda/\Lambda_{SFR} = 450/500 MeV$ 450/700 MeV550/600 MeV600/600 MeV600/700 MeV

EM

D. R. Entem and R. Machleidt,
PRC 68, 041001(R) (2003).
D. R. Entem and R. Machleidt,
Phys. Rept. 503, 1 (2011).

EGM

E. Epelbaum, W. Gloöckle, and U.-G. Meißner,
Eur. Phys. J. A **19**, 401 (2004).
E. Epelbaum, W. Gloöckle, and U.-G. Meißner,
Nucl. Phys. A **747**, 362 (2005).

• LEC for NNN

e.g., -0.3< **C**_D<-0.1, - 0.220< **C**_E<-0.189 c.f. D. Gazit, S. Quaglioni, and P. Navrátil, PRL **103**, 102502 (2009).

- How to include
 - N.O. w.r.t. the reference state
 - N.O. w.r.t. the Fermi gas
- A_{3N} & regulator form

The conditions for MBPT

shell model effective interaction

The robustness of tensor forces

Tensor forces are robust against

1. softening procedure (SRG/V_{lowk}) not sensitive to the λ/Λ (natural)

2. renormalization procedure (MBPT)

non-trivial (summation of Q-box diagrams)

Renormalization Persistency

N. Tsunoda *et al*. PRC **84**, 044322 (2011).

3. effective 2NF from 3NF (Fermi gas / N.O. w.r.t. the core)

tensor force from 3NFs enhances original 2NFs, but not large

Summary

- The strength of tensor force which embodies shell evolution can be also understood by chiral forces V_{lowk}/SRG, MBPT, the way to handle 3NF
- SPEs should be improved, but the density-dependent NN force from NNLO 3NF picks up the *essence* of 3NF as well as Int. a)

monopole analysis of TBME (Q-box)

