Merging IM-SRG and NCSM

Klaus Vobig, Eskendr Gebrerufael and Robert Roth

Institut für Kernphysik - Theoriezentrum

Bundesministerium für Bildung und Forschung

Motivation

- ab initio many-body methods for the description of ground and excited states in open-shell nuclei
- traditionally: shell-model-like approaches
 wilmited by basis dimension, scaling with particle number
- medium-mass methods:
 In-Medium SRG, Coupled Cluster
 basic formulations limited to ground states
- idea: use the IM-SRG as an "intermediate" tool for prediagonalization

In-Medium No-Core Shell Model

NCSM calculation in small model space defines reference state

$$|\Psi
angle = \sum_i c_i |\Phi_i
angle$$

In-Medium No-Core Shell Model

$$\hat{H}(s) \equiv E(s) + \sum_{pq} f_q^p(s) \left\{ \hat{p}^{\dagger} \hat{q} \right\}_{|\Psi\rangle} + \frac{1}{4} \sum_{pqrs} \Gamma_{rs}^{pq}(s) \left\{ \hat{p}^{\dagger} \hat{q}^{\dagger} \hat{s} \hat{r} \right\}_{|\Psi\rangle}$$

In-Medium No-Core Shell Model

Klaus Vobig, Eskendr Gebrerufael and Robert Roth - TU Darmstadt - March 1, 2017 - 2

IM-NCSM: Hamiltonian Representations

representations of the initial Hamiltonian $\hat{H}(0)$

• $|\Phi_i^{(0,2,4)}\rangle$: Slater determinants from the N = 0, 2, 4 space

• $|\Psi_i^{(0)}\rangle$: eigenstates of $\hat{H}(0)$ in the N = 0 space with $|\Psi\rangle \equiv |\Psi_0^{(0)}\rangle$

Klaus Vobig, Eskendr Gebrerufael and Robert Roth - TU Darmstadt - March 1, 2017 - 3

 $s = 0.00 \text{ MeV}^{-1}$

- $N_{max} = 0$ space diagonal
- eigenvalue = E(s)
- strong couplings of |Ψ) to basis states at higher N
- high N_{max} necessary for converged results

$$s = 0.07 \text{ MeV}^{-1}$$

- matrix elements coupling
 N = 0 and higher N basis
 states are being suppressed
- NCSM convergence w.r.t. N_{max} accelerates with increasing IM-SRG flow parameter s

$$s = 1.00 \text{ MeV}^{-1}$$

- N_{max} = 0 space decoupled from all basis states at higher N
- practically converged results at N_{max} = 0.

$$s = 1.00 \text{ MeV}^{-1}$$

- N_{max} = 0 space decoupled from all basis states at higher N
- practically converged results at N_{max} = 0.
- couplings of $|\Psi\rangle$ to other basis states $|\Psi_i^{(0)}\rangle$ emerge
- reference state $|\Psi\rangle$ not $N_{max} = 0$ eigenstate anymore
- eigenvalue $\neq E(s)$
- explicit diagonalization necessary

- eigenvalue $\neq E(s)$
- explicit diagonalization necessary

Klaus Vobig, Eskendr Gebrerufael and Robert Roth - TU Darmstadt - March 1, 2017 - 4

Thanks to my group

S. Alexa, E. Gebrerufael, T. Hüther, L. Kreher, L. Mertes, R. Roth, S. Schulz, H. Spielvogel, C. Stumpf, A. Tichai, R. Trippel, R. Wirth, T. Dörnfeld Institut für Kemphysik, TU Darmstadt

Thank you for your attention!

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung

COMPUTING TIME

