Hybrid Ab Initio Methods

Robert Roth

HIC

Ab Initio Methods

No-Core Shell Model

In-Medium Similarity Renormalization Group

Many-Body Perturbation Theory

CC, SCGF, QMC, ...

- solution of matrix eigenvalue problem in truncated many-body model space
- **flexibility:** all nuclei and all bound-state observables on the same footing
- **but:** limited by model-space convergence
- decoupling ground-state from excitations through unitary transformation via flow equation
- efficiency: favorable scaling gives access to medium-mass nuclei
- **but:** limited to ground-state observables
- power-series expansion of energies and states
- **simplicity:** low-order contributions can be evaluated very easily and efficiently
- **but:** order-by-order convergence problematic

No-Core Shell Model

In-Medium Similarity Renormalization Group

Many-Body Perturbation Theory

- complementarity of advantages and limitations of the different methods
- combine methods to overcome limitations
- expand reach in terms of observables, particle number or model-space size
- established example: CC-EOM
- target: spectroscopy of fully open-shell medium-mass nuclei

CC, SCGF, QMC, ...

Hybrid Ab Initio Methods

IM-NCSM: Merging NCSM and IM-SRG

with E. Gebrerufael, K. Vobig, H. Hergert

see poster by K. Vobig

In-Medium SRG

Tsukiyama, Bogner, Schwenk, Hergert,...

 Hamiltonian and generator in normal order with respect to single or multideterminant reference state, omit residual three-body piece

$$H(s) = E(s) + \sum_{ij} f_j^i(s) \tilde{A}_j^i + \frac{1}{4} \sum_{ijkl} \Gamma_{kl}^{ij}(s) \tilde{A}_{kl}^{ij} + \frac{1}{36} \sum_{ijklmn} W_{lmn}^{ijk}(s) \tilde{A}_{lmn}^{ijk}$$

define generator to suppress off-diagonal contributions that couple reference state to ph excitations

$$\gamma(s) = \left[H(s), H^{d}(s)\right] = \left[H^{od}(s), H^{d}(s)\right]$$

In-Medium SRG: Single Reference

zero-body piece of the flowing Hamiltonian gives ground-state energy when full decoupling is reached

$$E(s) = \langle \Phi_{\text{ref}} | H(s) | \Phi_{\text{ref}} \rangle$$

truncation of flow equations destroys unitarity, induced many-body terms

In-Medium SRG: Single Reference

Merging NCSM and IM-SRG

- ground-state from NCSM at small *N*_{max} as reference state for multi-reference IM-SRG
- access to all open-shell nuclei and systematically improvable
- IM-SRG evolution of multi-reference normalordered Hamiltonian (and other operators)
- decoupling of particle-hole excitations, i.e., pre-diagonalization in A-body space
- use in-medium evolved Hamiltonian for a subsequent NCSM calculation
- access to ground and excited states and full suite of observables

Merging NCSM and IM-SRG

IM-NCSM is different from IM-SRG for valence-space interactions:

- build on explicit multi-reference formulation for nucleus of choice
- full no-core approach, all nucleons active
- all model-space truncations are converged

In-Medium SRG: Multi Reference

Gebrerufael et al., arXiv:1610.05254

Robert Roth - TU Darmstadt - March 2017

In-Medium SRG: Multi Reference

Gebrerufael et al., arXiv:1610.05254

Robert Roth - TU Darmstadt - March 2017

Flow: Ground-State Energy

Gebrerufael et al., arXiv:1610.05254

Robert Roth - TU Darmstadt - March 2017

Flow: Ground-State Energy

IM-NCSM: Ground-State Energies

Gebrerufael et al., arXiv:1610.05254

IM-NCSM: Ground-State Energies

Gebrerufael et al., arXiv:1610.05254

good agreement with NCSM within uncertainties expected from omission of normal-ordered many-body terms

¹²C shows surprisingly large spread among methods

Flow: 2⁺ Excitation Energy

Flow: 0+ Excitation Energy

Flow: Signatures of Hoyle State

IM-NCSM: Excitation Spectra

- IM-NCSM and direct NCSM in excellent agreement for converged states
- first excited 0⁺ states in ¹²C and ¹⁶C differ

NCSM-PT: Merging NCSM with MBPT

with A. Tichai

Merging NCSM and MBPT

- eigenstates from NCSM at moderate N_{max} as unperturbed states
- access to all open-shell nuclei and systematically improvable
- multi-configurational MBPT at low orders for individual unperturbed states
- capture couplings in huge model-space through perturbative corrections

Multi-Configurational Perturbation Theory

Tichai et al., in prep.

prior NCSM calculation: reference or unperturbed state is superposition of Slater determinants from reference space

$$|\Psi_{\rm ref}\rangle = \sum_{\nu \in \mathcal{M}_{\rm ref}} C_{\nu} |\Phi_{\nu}\rangle$$

define partitioning and unperturbed Hamiltonian

$$H_{0} = \epsilon_{\text{ref}} |\Psi_{\text{ref}}\rangle \langle \Psi_{\text{ref}}| + \sum_{\nu \notin \mathcal{M}_{\text{ref}}} \epsilon_{\nu} |\Phi_{\nu}\rangle \langle \Phi_{\nu}|$$

evaluate second-order correction to the energy at many-body level

$$E^{(2)} = -\sum_{\nu \notin \mathcal{M}_{ref}} \frac{|\langle \Phi_{\nu} | H | \Psi_{ref} \rangle|^2}{\epsilon_{\nu} - \epsilon_{ref}}$$

use m-scheme NCSM technology and multi-reference normal-ordering to evaluate matrix elements for E⁽²⁾

Ground-State Energies

Tichai et al., in prep.

Ground-State Energies

Tichai et al., in prep.

NCSM-PT: Ground-State Energies

Tichai et al., in prep.

NCSM-PT: Ground-State Energies

Tichai et al., in prep.

excellent agreement with full NCSM except for nuclei beyond the drip line

factor 1000 less CPU time for NCSM-PT compared to large-scale IT-NCSM

NCSM-PT: Excitation Spectra

Tichai et al., in prep.

Conclusions: Hybrid Ab Initio Methods

- ab initio access to ground and excited states of fully open-shell medium-mass nuclei
- 2-3 orders of magnitude less CPU time than IT-NCSM and very different computational characteristics

Epilogue

thanks to my group and my collaborators

 S. Alexa, E. Gebrerufael, T. Hüther, L. Mertes, S. Schulz, H. Spielvogel, C. Stumpf, A. Tichai, K. Vobig, R. Wirth Technische Universität Darmstadt

- P. Navrátil, A. Calci TRIUMF, Vancouver
- S. Binder Oak Ridge National Laboratory
- H. Hergert NSCL / Michigan State University
- J. Vary, P. Maris Iowa State University
- E. Epelbaum, H. Krebs & the LENPIC Collaboration Universität Bochum, ...

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung