# Electromagnetic Strength Distributions from the IT-NCSM 

Christina Stumpf Tobias Wolfgruber Robert Roth Institut für Kernphysik

## Motivation

Tryggestadt et al.: Nucl. Phys. A 687 (2001) 231

- testing ground for theoretical models
- electromagnetic transitions sensitive to detailed form of nuclear wave function
- strength distributions can be easily related to experiments
- IT-NCSM + Lanczos strength functions
- conceptually simple and efficient method for calculation of strength distributions
- validate strength distributions from approximate approaches


## Strength Functions from Simple Lanczos Algorithm

■ aim: $\left.\quad S(E)=\sum_{f}\left|\left\langle\Psi_{f}\right| \mathbf{O}\right| \Psi_{i}\right\rangle\left.\right|^{2} \delta\left(E-E_{f}\right)$

- simple Lanczos algorithm:
- start from normalized pivot vector $\left|\Sigma_{1}\right\rangle$
- construct tridiagonal matrix $T$ iteratively via basis transformation of Hamilton matrix
- diagonalize $T$


## Strength Functions from Simple Lanczos Algorithm

■ aim: $\left.\quad S(E)=\sum_{f}\left|\left\langle\Psi_{f}\right| \mathbf{O}\right| \Psi_{i}\right\rangle\left.\right|^{2} \delta\left(E-E_{f}\right)$
■ simple Lanczos algorithm: $\quad \Rightarrow \quad$ matrix $U\left(T \rightarrow \operatorname{diag}\left(\epsilon_{j}\right)\right)$ :

- start from normalized pivot vector $\left|\Sigma_{1}\right\rangle$
- construct tridiagonal matrix $T$ iteratively via basis transformation of Hamilton matrix
- diagonalize $T$



## Strength Functions from Simple Lanczos Algorithm

■ aim: $\left.\quad S(E)=\sum_{f}\left|\left\langle\Psi_{f}\right| \mathbf{O}\right| \Psi_{i}\right\rangle\left.\right|^{2} \delta\left(E-E_{f}\right)$
■ simple Lanczos algorithm: $\quad \Rightarrow \quad$ matrix $U\left(T \rightarrow \operatorname{diag}\left(\epsilon_{j}\right)\right)$ :

- start from normalized pivot vector $\left|\Sigma_{1}\right\rangle$
- construct tridiagonal matrix $T$ iteratively via basis transformation of Hamilton matrix
- diagonalize $T$

$$
\left|\Psi_{1}\right\rangle \quad\left|\Psi_{2}\right\rangle \cdots\left|\Psi_{m}\right\rangle
$$

| $\left\|\Sigma_{1}\right\rangle$ | $U_{1,1}$ | $U_{1,2}$ | $\cdots$ | $U_{1, m}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left\|\Sigma_{2}\right\rangle$ | $U_{2,1}$ | $U_{2,2}$ | $\cdots$ | $\vdots$ |
| $\vdots$ | $\vdots$ | $\vdots$ | $\ddots$ | $\vdots$ |
| $\left\|\Sigma_{m}\right\rangle$ | $U_{m, 1}$ | $U_{m, 2}$ | $\cdots$ | $U_{m, m}$ |$|$

■ $U_{1, j}=\left\langle\Sigma_{1} \mid \Psi_{j}\right\rangle$ is overlap of pivot vector with eigenstate of $T$

## Strength Functions from Simple Lanczos Algorithm

■ aim: $\left.\quad S(E)=\sum_{f}\left|\left\langle\Psi_{f}\right| \mathbf{O}\right| \Psi_{i}\right\rangle\left.\right|^{2} \delta\left(E-E_{f}\right)$

- simple Lanczos algorithm: $\quad \Rightarrow \quad$ matrix $U\left(T \rightarrow \operatorname{diag}\left(\epsilon_{j}\right)\right)$ :
- start from normalized pivot vector $\left|\Sigma_{1}\right\rangle$
- construct tridiagonal matrix $T$ iteratively via basis transformation of Hamilton matrix
- diagonalize $T$

$$
\left|\Psi_{1}\right\rangle \quad\left|\Psi_{2}\right\rangle \cdots\left|\Psi_{m}\right\rangle
$$

| $\left\|\Sigma_{1}\right\rangle$ | $U_{1,1}$ | $U_{1,2}$ | $\cdots$ | $U_{1, m}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\left\|\Sigma_{2}\right\rangle$ | $U_{2,1}$ | $U_{2,2}$ | $\cdots$ | $\vdots$ |
| $\vdots$ | $\vdots$ | $\vdots$ | $\ddots$ | $\vdots$ |
| $\left\|\Sigma_{m}\right\rangle$ | $U_{m, 1}$ | $U_{m, 2}$ | $\cdots$ | $U_{m, m}$ |$|$

- $U_{1, j}=\left\langle\Sigma_{1} \mid \Psi_{j}\right\rangle$ is overlap of pivot vector with eigenstate of $T$
- choose special pivot: $\left|\Sigma_{1}\right\rangle=\frac{1}{\sqrt{\tilde{S}}} \mathbf{O}\left|\Psi_{i}\right\rangle, \quad \tilde{S}=\left\langle\Psi_{i}\right| \mathbf{O}^{\dagger} \mathbf{O}\left|\Psi_{i}\right\rangle$

■ fast converging approximation of $S(E)$ with number of iterations

## Effects of Finite-Precision Arithmetics



- reorthogonalization of Lanczos basis would render method impractical


## Effects of Finite-Precision Arithmetics



- reorthogonalization of Lanczos basis would render method impractical


## Effects of Finite-Precision Arithmetics



- reorthogonalization of Lanczos basis would render method impractical


## Effects of Finite-Precision Arithmetics



- reorthogonalization of Lanczos basis would render method impractical
$\Rightarrow$ orthogonality loss no issue
$\Rightarrow$ efficiency of Lanczos strength functions approach


## Convergence Benchmark for ${ }^{16} \mathrm{O}$



■ negligible effect of importance truncation

## Convergence Benchmark for ${ }^{16} \mathrm{O}$



■ negligible effect of importance truncation

■ very fast convergence w.r.t. Lanczos basis size

## Convergence Benchmark for ${ }^{16} \mathrm{O}$



■ negligible effect of importance truncation

- very fast convergence w.r.t. Lanczos basis size

■ model-space convergence as for spectra

## Convergence Benchmark for ${ }^{16} \mathrm{O}$



■ negligible effect of importance truncation

- very fast convergence w.r.t. Lanczos basis size
- model-space convergence as for spectra

■ same convergence behavior for other modes

