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Outline
I How does the symplectic basis relate to the harmonic oscillator basis?

I Symplectic no-core configuration interaction (SpNCCI) framework

I Initial calculations
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Harmonic oscillator basis
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I States are configurations, i.e., distributions of
particles over HO shells

I Nex: total number of oscillator quanta above
lowest Pauli allowed number.

I Wavefunctions are linear combinations of
infinitely many HO configurations

|Ψ〉= c0φ0 +c1φ1 +c2φ2 + ...+ciφi + ...

I Basis must be truncated

I How large must the basis be to contain states
necessary for convergence?
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Nmax truncation
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I Basis includes all configurations with Nex ≤ Nmax

I Interaction strength expected to decrease with N

I Kinetic energy strongly couples configurations at
low Nex to those at high Nex

I Basis must include these high Nex configurations
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Recap
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I Ab initio NCCI calculations are computationally bound by the large basis size
necessary for convergence — which arises, in large part, because of strong
connections between low-Nex and high-Nex configurations induced by kinetic
energy.

I SpNCCI basis states incorporate Sp(3,R), SU(3) and SU(2) symmetries.

I A symplectic irrep is generated by starting with the lowest Nex configuration and
repeatedly acting with the symplectic raising operator A .

A |N〉 → |N+2〉

I Truncation by symplectic irrep allows us to include relevant high Nex
configurations in basis without needing to include full Nex subspace.

I Matrix elements are computed recursively and so explicit construction of full
basis is not necessary.

I We have initial results as of 5 days, 5 hours and 43 minutes ago.



Nuclear symmetries
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Exact symmetries
I Spacial Translation (p)

I Time Translation (E)

I Rotation (J): SU(2)

Approximate symmetries
I Isospin (T )

I Elliot SU(3)

I Symplectic Sp(3,R)

Why symplectic

Kinetic energy strongly connects states of different Nex (∆Nex = 2)

I Results in strong mixing of high Nex configurations into many-body eigenstates

Kinetic energy conserves Sp(3,R) symmetry!



Symplectic reorganization of the many-body space
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If we reorganize the many-body space by symplectic symmetry...

I Kinetic energy does not connect different symplectic irreducible
representations (irrep)

I Resulting basis states are highly-correlated linear combinations of
harmonic oscillator configurations
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Kinetic energy
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Symplectic basisM-scheme basis



Exact symmetry under rotation: SU(2)
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SU(3)-NCSM basis
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SU(3) basis constructionSU(3) basis construction

Complete NCSM basis constructed by coupling the antisymmetric U(N)xU(2)⊃⊃SU(3)xSU(2) representations

obtain antisymmetric U(N)xU(2)⊃⊃SU(3)xSU(2) representations

s
p

sd

pf

s
p

sd

pf

Proton space 

Neutron space
f®(¸¹)Sgsd

f®(¸¹)Sgp

f®(¸¹)Sgsd

f®(¸¹)Sgpf

½2(¸2 ¹2)S2

½º(¸º ¹º)Sº

½1(¸1 ¹1)S1

½¼(¸¼ ¹¼)S¼

½(¸¹)S

number of states =

Step 2Step 1

perform SU(3)xSU(2) inter-shell coupling

f®(¸ ¹)Sg

apply selection rules to winnow the model space

block-cyclic distribution of basis states over diagonal processes

each block is spanned by basis states of irrep ½(¸¹)S

·1 L1 J1
·2 L2 J2
·3 L3 J3
·4 L4 J4
·6 L6 J6
·7 L7 J7
·8 L8 J8
·9 L9 J9
·10 L10 J10
·11 L11 J11
·12 L12 J12
·13 L13 J13
·14 L14 J14
·15 L15 J15
·16 L16 J16
·17 L17 J17

f·i Li Jig

½dim [(¸ ¹)S] (¦®i)(¦½j)(¦®k)(¦½l)

(0 0)S = 0

(3 0)S = 1=2

(1 0)S = 1=2

(1 0)S1 = 1=2

SU(3) symmetry of a nucleus is obtained by:

1. SU(3) coupling particles within major shells.
Each particle has SU(3) symmetry (N,0)
where N = 2n+ l.

2. SU(3) coupling successive shells.

3. SU(3) coupling protons and neutrons.

References: J. P. Elliott, Proc. Roy. Soc. (London) A 245, 562 (1958). M. Harvey, in
Advances in Nuclear Physics, Volume 1, edited by M. Baranger and E. Vogt (1968),
Annalen der Physik Vol. 1, p. 67.



SU(3)-NCSM basis: 18O
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SU(3) has built-in correlations



SU(3) decomposition
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analyze the probability distribution across ðSpSnSÞ and
ð!"Þ configurations of the four lowest-lying isospin-zero
(T ¼ 0) states of 6Li (1þgs, 3

þ
1 , 2

þ
1 , and 1þ2 ), along with the

ground-state rotational bands of 8Be and 6He. Results for
the ground state of 6Li and 8Be, obtained with the JISP16
and chiral N3LO interactions, respectively, are shown in
Fig. 1. This figure illustrates a feature common to all the
low-energy solutions considered: namely, a highly struc-
tured and regular mix of intrinsic spins and SU(3) spatial
quantum numbers that has heretofore gone unrecognized in
other ab initio studies, and which does not seem to depend
on the particular choice of realistic NN potential.

First, consider the spin content. The calculated eigen-
states project at a 99% level onto a comparatively small
subset of intrinsic spin combinations. For instance, the
lowest-lying eigenstates in 6Li are almost entirely realized
in terms of configurations characterized by the following
intrinsic spin ðSpSnSÞ triplets: ð32 3

2 3Þ, ð12 3
2 2Þ, ð32 1

2 2Þ, and
ð12 1

2 1Þ, with the last one carrying over 90% of each eigen-
state. Similarly, the ground-state bands of 8Be and 6He are
found to be dominated by configurations carrying total
intrinsic spin of the protons and neutrons equal to zero
and one, with the largest contributions due to ðSpSnSÞ ¼
ð000Þ and (112) configurations.

Second, consider the spatial degrees of freedom. The
mixing of ð!"Þ quantum numbers exhibits a remarkably
simple pattern. One of its key features is the preponderance
of a single 0@! SU(3) irrep. This irrep, termed leading irrep,
is characterized by the largest value of the intrinsic quadru-
pole deformation [23]; for instance, the low-lying states of
6Li project at a 40%–70% level onto the prolate 0@! SU(3)
irrep (20), as illustrated in Fig. 1. For the ground state band of
8Be and 6He, qualitatively similar dominance of the leading
0@! SU(3) irreps is observed. The dominance of the most
deformed 0@! configuration indicates that the quadrupole-
quadrupole interaction of the Elliott SU(3) model [21] is
realized naturally within an ab initio framework.
The analysis also reveals that the dominant SU(3) basis

states at each N@! subspace (N ¼ 0; 2; 4; . . . ) are typi-
cally those with ð!"Þ quantum numbers given by

!þ 2" ¼ !0 þ 2"0 þ N; (1)

where !0 and"0 denote labels of the leading SU(3) irrep in
the 0@! (N ¼ 0) subspace. We conjecture that this regular
pattern of SU(3) quantum numbers reflects the presence of
an underlying symplectic Spð3;RÞ symmetry of micro-
scopic nuclear collective motion [32] that governs the
low-energy structure of both even-even and odd-odd

FIG. 1 (color). Probability distributions across ðSpSnSÞ and ð!"Þ values (horizontal axis) for the calculated 1þgs of
6Li obtained for

Nmax ¼ 10 and @! ¼ 20 MeV with the JISP16 interaction (left) and the 0þgs of
8Be obtained for Nmax ¼ 8 and @! ¼ 25 MeV with the

chiral N3LO interaction (right). The total probability for each N@! subspace is given in the upper left-hand corner of each histogram.
The concentration of strengths to the far right demonstrates the dominance of collectivity.

PRL 111, 252501 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

20 DECEMBER 2013

252501-2

T. Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501.

I Ground state wavefunction
dominated by a few SU(3)
irreps

I SU(3) irreps consistent with
Sp(3,R) symmetry

SU(3) decomposition of 8Be 0+gs
Nmax=10
~Ω= 20 MeV
Chiral N3LO



Sp(3,R) algebra

A. E. McCoy, M. A. Caprio, and T. Dytrych

TRIUMF 15 / 31
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 SU(3) to SO(3) branching multiplicity
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References: D. J. Rowe, Rep. Prog. Phys. 48, 1419 (1985). Y. Suzuki and K. T. Hecht, Nuc. Phys. A 455, 315 (1986).



Recap
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I Ab initio NCCI calculations are computationally bound by the large basis size
necessary for convergence — which arises, in large part, because of strong
connections between low-Nex and high-Nex configurations induced by kinetic
energy.

I SpNCCI basis states incorporate Sp(3,R), SU(3) and SU(2) symmetries.

I A symplectic irrep is generated by starting with the lowest Nex configuration and
repeatedly acting with the symplectic raising operator A .

A |N〉 → |N+2〉

I Truncation by symplectic irrep allows us to include relevant high Nex
configurations in basis without needing to include full Nex subspace.

I Matrix elements are computed recursively and so explicit construction of full
basis is not necessary.

I We have initial results as of 5 days, 5 hours and 43 minutes ago.



Sp(3,R) raising operator
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Sp(3,R) raising operator relates states with different number of oscillator excitation quanta Nex.

I Symplectic states have built in correlations across distributions of
particles over major oscillator shells.
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Symplectic basis
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Symplectic irrep
I Start from lowest Nex U(3) irrep:

lowest grade irrep (LGI)

I Repeatedly act on the LGI with the
Sp(3,R) raising operator

|ψ〉= AA · · ·A |LGI〉

I Truncate each Sp(3,R) irrep by total
number of oscillator excitations Nmax

Defining SpNCCI basis

I Select a set of symplectic irreps

I E.g., select only irreps whose LGI have
Nex ≤ Nσ,max



Basis dimensions with increasing Nσ,max
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Basis dimensions with increasing Nσ,max
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Basis dimensions with increasing Nσ,max
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Recap
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I Ab initio NCCI calculations are computationally bound by the large basis size
necessary for convergence — which arises, in large part, because of strong
connections between low-Nex and high-Nex configurations induced by kinetic
energy.

I SpNCCI basis states incorporate Sp(3,R), SU(3) and SU(2) symmetries.

I A symplectic irrep is generated by starting with the lowest Nex configuration and
repeatedly acting with the symplectic raising operator A .

A |N〉 → |N+2〉

I Truncation by symplectic irrep allows us to include relevant high Nex
configurations in basis without needing to include full Nex subspace.

I Matrix elements are computed recursively and so explicit construction of full
basis is not necessary.

I We have initial results as of 5 days, 5 hours and 43 minutes ago.
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I Ab initio NCCI calculations are computationally bound by the large basis size
necessary for convergence — which arises, in large part, because of strong
connections between low-Nex and high-Nex configurations induced by kinetic
energy.

I SpNCCI basis states incorporate Sp(3,R), SU(3) and SU(2) symmetries.

I A symplectic irrep is generated by starting with the lowest Nex configuration and
repeatedly acting with the symplectic raising operator A .

A |N〉 → |N+2〉

I Truncation by symplectic irrep allows us to include relevant high Nex
configurations in basis without needing to include full Nex subspace.

I Matrix elements are computed recursively and so explicit construction of full
basis is not necessary.

I We have initial results as of 5 days, 5 hours and 43 minutes ago.



Calculations in a symplectic basis
T. Dytrych et al., J. Phys. G: Nucl. Part. Phys. 35 (2008) 123101.

T. Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501.
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I Expand Sp(3,R) states in terms of SU(3)-NCSM states

I Diagonalize Sp(3,R) Casimir operator in SU(3)-coupled basis
R. B. Baker, Ab initio symplectic-model results for light and medium-mass nuclei,
Progress in Ab Initio Techniques in Nuclear Physics, Vancouver, BC, 2016.

I Obtain expansion of LGIs in SU(3)-coupled basis, then repeatedly apply
symplectic raising operator to LGIs
F. Q. Luo, Ph.D. thesis, University of Notre Dame (2014).

I Expand matrix elements in terms of LGI matrix elements using operator
commutators (Suzuki and Hecht approach)
Y. Suzuki and K. T. Hecht, Nuc. Phys. A 455 (1986) 315.

J. Escher and J. P. Draayer, J. Math. Phys. 39 (1998) 51223.



SpNCCI recurrence scheme
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I Expand Hamiltonian in terms of fundamental “unit tensor” operatorsU(a,b)
(analogous to TBME expansion of two-body operators in terms of c†ac†bcccd)

H =
∑
〈a ||H||b〉U(a,b)

I Expand only LGIs in SU(3)-NCSM basis
I Compute seed matrix elements (LSU3shell)

T. Dytrych et al., Compt. Phys. Commun. 207 (2016) 202.

I Compute matrix elements ofU(a,b) via recurrence
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hN 0||U||Ni = hN 0||UA||N � 2i

= hN 0||A U||N � 2i + hN 0||[U , A]||N � 2i

= hN 0 � 2||U||N � 2i + hN 0||[U , A]||N � 2i

H =
X

ha||H||bi U(a, b) (1)

Sp(3,R) generators

A
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LM = 1p

2

P
n(b†

n ⇥ b†
n)

(20)
LM symplectic raising

B
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LM = 1p

2

P
n(bn ⇥ bn)
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p
2
P

n(b†
n ⇥ bn)

(11)
LM SU(3) generators

H
(00)
00 =

p
3
P

n(b†
n ⇥ bn)

(00)
00 HO Hamiltonian

Sp(3, R) � U(3) � SO(3)
� � !  L

⌦ � SU(2)
SU(2) J

S

(2)

2

N

N’
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I Ab initio NCCI calculations are computationally bound by the large basis size
necessary for convergence — which arises, in large part, because of strong
connections between low-Nex and high-Nex configurations induced by kinetic
energy.

I SpNCCI basis states incorporate Sp(3,R), SU(3) and SU(2) symmetries.

I A symplectic irrep is generated by starting with the lowest Nex configuration and
repeatedly acting with the symplectic raising operator A .

A |N〉 → |N+2〉

I Truncation by symplectic irrep allows us to include relevant high Nex
configurations in basis without needing to include full Nex subspace.

I Matrix elements are computed recursively and so explicit construction of full
basis is not necessary.

I We have initial results as of 5 days, 5 hours and 43 minutes ago.
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I Examine convergence with Nσ,max

I Need to include all irreps strongly connected by interaction
At what Nmax does the interaction fade away and the kinetic energy dominate?
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I Examine convergence with Nσ,max

I Need to include all irreps strongly connected by interaction
At what Nmax does the interaction fade away and the kinetic energy dominate?
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I Ab initio NCCI calculations are computationally bound by the large basis size
necessary for convergence — which arises, in large part, because of strong
connections between low-Nex and high-Nex configurations induced by kinetic
energy.

I SpNCCI basis states incorporate Sp(3,R), SU(3) and SU(2) symmetries.

I A symplectic irrep is generated by starting with the lowest Nex configuration and
repeatedly acting with the symplectic raising operator A .

A |N〉 → |N+2〉

I Truncation by symplectic irrep allows us to include relevant high Nex
configurations in basis without needing to include full Nex subspace.

I Matrix elements are computed recursively and so explicit construction of full
basis is not necessary.

I We have initial results as of 5 days, 5 hours and 43 minutes ago.



Going forward

I Significant improvement can be made to SpNCCI code (memory usage and
parallelization) to extend calculations to higher Nσ,max and Nmax (and heavier
nuclei).

I Exploration of basis truncations: restrict basis to physically preferred LGI’s

I Extract physically preferred transformed LGI set from wave functions in low Nmax
reference calculation

I Determine preferred LGI set from self consistency approach
D. J. Rowe, Phys. Rev. Lett. 97 (2006) 202501.
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