Symplectic no-core configuration interaction framework

A. E. McCoy ${ }^{1}$, M. A. Caprio ${ }^{1}$, and T. Dytrych ${ }^{2}$
${ }^{1}$ University of Notre Dame
${ }^{2}$ Nuclear Physics Institute, Academy of Sciences of the Czech Republic

February 29, 2017

Dimension explosion for NCCI calculations

A. E. McCoy, M. A. Caprio, and T. Dytrych

Ab initio many-body calculations in a symplectic scheme

Outline

- How does the symplectic basis relate to the harmonic oscillator basis?
- Symplectic no-core configuration interaction (SpNCCI) framework
- Initial calculations

Acknowledgements

- David Rowe (University of Toronto)
- Pieter Maris (Iowa State University)
- Calvin Johnson (San Diego State University)
- Chao Yang (Lawrence Berkeley National Laboratory)
- Patrick Fasano (University of Notre Dame)

Harmonic oscillator basis

- States are configurations, i.e., distributions of particles over HO shells
- $\boldsymbol{N}_{\text {ex }}$: total number of oscillator quanta above lowest Pauli allowed number.
- Wavefunctions are linear combinations of infinitely many HO configurations

$$
|\Psi\rangle=c_{0} \phi_{0}+c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{i} \phi_{i}+\ldots
$$

- Basis must be truncated
- How large must the basis be to contain states necessary for convergence?

$$
N=2 n+\ell
$$

$N_{\text {ex }}=2$

$N_{\text {max }}$ truncation

- Basis includes all configurations with $N_{\text {ex }} \leq N_{\text {max }}$
- Interaction strength expected to decrease with N
- Kinetic energy strongly couples configurations at low $N_{\text {ex }}$ to those at high $N_{\text {ex }}$
- Basis must include these high $N_{\text {ex }}$ configurations

Oћ Ω

Recap

- Ab initio NCCI calculations are computationally bound by the large basis size necessary for convergence - which arises, in large part, because of strong connections between low- $N_{\text {ex }}$ and high $-N_{\text {ex }}$ configurations induced by kinetic energy.

Nuclear symmetries

Exact symmetries

- Spacial Translation (p)
- Time Translation (E)
- Rotation (J): SU(2)

Approximate symmetries

- Isospin (T)
- Elliot SU(3)
- Symplectic $\operatorname{Sp}(3, \mathbb{R})$

Why symplectic

Kinetic energy strongly connects states of different $N_{\text {ex }}\left(\Delta N_{\text {ex }}=2\right)$

- Results in strong mixing of high $N_{\text {ex }}$ configurations into many-body eigenstates

$$
\text { Kinetic energy conserves } \operatorname{Sp}(3, \mathbb{R}) \text { symmetry! }
$$

Symplectic reorganization of the many-body space

 If we reorganize the many-body space by symplectic symmetry...- Kinetic energy does not connect different symplectic irreducible representations (irrep)
- Resulting basis states are highly-correlated linear combinations of harmonic oscillator configurations

Kinetic energy

M-scheme basis

Symplectic basis

Exact symmetry under rotation: $\mathrm{SU}(2)$

$\operatorname{SU}(2)$ generators	
J_{0}	Weight operator
$J_{ \pm}$	Raising and lowering operator

Action of the lowering operator

$$
\begin{gathered}
J_{ \pm}|J M\rangle=\sqrt{(J \mp M)(J \pm M+1)}|J M \pm 1\rangle \\
J_{-}|J-J\rangle=0
\end{gathered}
$$

Irreducible representation (irrep) J

$$
M=-J, \ldots, J
$$

Hamiltonian matrix can be broken into J spaces (J -scheme)

$\mathrm{J}=0$	0	0
0	$\mathrm{~J}=2$	0
0	0	$\mathrm{~J}=4$

SU(3)-NCSM basis

SU(3) generators

$Q_{2 M}$	Algebraic quadrupole operator
$L_{1 M}$	Orbital angular momentum

$$
\begin{array}{ccc}
\mathrm{SU}(3) & \supset & \mathrm{SO}(3) \\
(\lambda, \mu) & \kappa & L
\end{array}
$$

$$
\begin{array}{ccc}
\otimes & \supset & S U(2) \\
\mathrm{SU}(2) & & J \\
S &
\end{array}
$$

$(\lambda, \mu) \quad \mathrm{SU}(3)$ irreducible representation (irrep) $\kappa \quad \mathrm{SU}(3)$ to $\mathrm{SO}(3)$ branching multiplicity
$L \quad$ Orbital angular momentum

SU(3)-NCSM basis: ${ }^{18} \mathrm{O}$

SU(3) has built-in correlations

SU(3) decomposition

- Ground state wavefunction dominated by a few SU(3) irreps
- SU(3) irreps consistent with Sp(3,R) symmetry
$\mathrm{SU}(3)$ decomposition of ${ }^{8} \mathrm{Be} \mathrm{O}_{\text {gs }}^{+}$
Nmax=10
$\hbar \Omega=20 \mathrm{MeV}$
Chiral $N^{3} L O$

T. Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501.

$\mathrm{Sp}(3, \mathbb{R})$ algebra

$\operatorname{Sp}(3, \mathbb{R})$ generators

$A_{L M}^{(20)}=\frac{1}{\sqrt{2}} \sum_{i}\left(b_{i}^{\dagger} \times b_{i}^{\dagger}\right)_{L M}^{(20)}$	$\mathrm{Sp}(3, \mathbb{R})$ raising
$B_{L M}^{(02)}=\frac{1}{\sqrt{2}} \sum_{i}\left(b_{i} \times b_{i}\right)_{L M}^{(02)}$	$\mathrm{Sp}(3, \mathbb{R})$ lowering
$C_{L M}^{(11)}=\sqrt{2} \sum_{i}\left(b_{i}^{\dagger} \times b_{i}\right)_{L M}^{(11)}$	$\mathrm{SU}(3)$ generators
$H_{00}^{(00)}=\sqrt{3} \sum_{i}\left(b_{i}^{\dagger} \times b_{i}\right)_{00}^{(00)}$	HO Hamiltonian

The kinetic energy
$T_{00}=\frac{1}{2}\left(2 H_{00}^{(0,0)}-\sqrt{6} A_{00}^{(2,0)}-\sqrt{6} B_{00}^{(0,2)}\right)$

$\mathbf{S p}(3, \mathbb{R})$ states with spin: $|\sigma v \omega \kappa L S J M\rangle$

$\mathrm{Sp}(3, \mathbb{R})$	\supset	$\mathrm{U}(3)$	\supset	$\mathrm{SO}(3)$		
σ	v	ω	κ	L		
				\otimes	\supset	$\mathrm{SU}(2)$
				$\mathrm{SU}(2)$		J
				S		

σ Lowest grade U(3) irrep (LGI), labels the $\operatorname{Sp}(3, \mathbb{R})$ irrep
$v \mathrm{Sp}(3, \mathbb{R})$ to $\mathrm{U}(3)$ branching multiplicity
$\omega \quad \mathrm{U}(3)$ symmetry of state in $\operatorname{Sp}(3, \mathbb{R})$ irrep
$\kappa \mathrm{U}(3)$ to $\mathrm{SO}(3)$ branching multiplicity
L Orbital angular momentum
S Spin
J Total angular momentum

$$
\begin{gathered}
\frac{\mathrm{U}(3)=\mathrm{U}(1) \otimes \mathrm{SU}(3)}{\sigma=N_{\sigma}\left(\lambda_{\sigma}, \mu_{\sigma}\right)} \\
\omega=N_{\omega}\left(\lambda_{\omega}, \mu_{\omega}\right)
\end{gathered}
$$

Recap

- Ab initio NCCI calculations are computationally bound by the large basis size necessary for convergence - which arises, in large part, because of strong connections between low- $N_{\text {ex }}$ and high- $N_{\text {ex }}$ configurations induced by kinetic energy.
- SpNCCI basis states incorporate $\operatorname{Sp}(3, \mathbb{R}), \mathrm{SU}(3)$ and $\mathrm{SU}(2)$ symmetries.

$\mathrm{Sp}(3, \mathbb{R})$ raising operator

$$
A_{L M}^{(20)}=\frac{1}{\sqrt{2}} \sum_{i}\left(b_{i}^{\dagger} \times b_{i}^{\dagger}\right)_{L M}^{(20)}
$$

$\mathrm{Sp}(3, \mathbb{R})$ raising operator relates states with different number of oscillator excitation quanta N_{ex}.

- Symplectic states have built in correlations across distributions of particles over major oscillator shells.

Symplectic basis

Symplectic irrep

- Start from lowest $N_{\text {ex }} U(3)$ irrep: lowest grade irrep (LGI)
- Repeatedly act on the LGI with the $\mathrm{Sp}(3, \mathbb{R})$ raising operator

$$
|\psi\rangle=A A \cdots A \mid \text { LGI }\rangle
$$

- Truncate each $\mathrm{Sp}(3, \mathbb{R})$ irrep by total number of oscillator excitations $N_{\max }$

Defining SpNCCI basis

- Select a set of symplectic irreps
- E.g., select only irreps whose LGI have $N_{\text {ex }} \leq N_{\sigma, \text { max }}$

Basis dimensions with increasing $N_{\sigma, \text { max }}$

Basis dimensions with increasing $N_{\sigma, \text { max }}$

Basis dimensions with increasing $N_{\sigma, \text { max }}$

Recap

- Ab initio NCCI calculations are computationally bound by the large basis size necessary for convergence - which arises, in large part, because of strong connections between low- $N_{\text {ex }}$ and high- $N_{\text {ex }}$ configurations induced by kinetic energy.
- SpNCCI basis states incorporate $\operatorname{Sp}(3, \mathbb{R}), \mathrm{SU}(3)$ and $\mathrm{SU}(2)$ symmetries.
- A symplectic irrep is generated by starting with the lowest $N_{\text {ex }}$ configuration and repeatedly acting with the symplectic raising operator A.

$$
A|N\rangle \rightarrow|N+2\rangle
$$

Recap

- Ab initio NCCI calculations are computationally bound by the large basis size necessary for convergence - which arises, in large part, because of strong connections between low- $N_{\text {ex }}$ and high- $N_{\text {ex }}$ configurations induced by kinetic energy.
- SpNCCI basis states incorporate $\operatorname{Sp}(3, \mathbb{R}), \mathrm{SU}(3)$ and $\mathrm{SU}(2)$ symmetries.
- A symplectic irrep is generated by starting with the lowest $N_{\text {ex }}$ configuration and repeatedly acting with the symplectic raising operator A.

$$
A|N\rangle \rightarrow|N+2\rangle
$$

- Truncation by symplectic irrep allows us to include relevant high $N_{\text {ex }}$ configurations in basis without needing to include full $N_{\text {ex }}$ subspace.

Calculations in a symplectic basis

T. Dytrych et al., J. Phys. G: Nucl. Part. Phys. 35 (2008) 123101.
T. Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501.

- Expand $\operatorname{Sp}(3, \mathbb{R})$ states in terms of $\mathrm{SU}(3)$-NCSM states
- Diagonalize $\operatorname{Sp}(3, \mathbb{R})$ Casimir operator in $\mathrm{SU}(3)$-coupled basis R. B. Baker, Ab initio symplectic-model results for light and medium-mass nuclei, Progress in Ab Initio Techniques in Nuclear Physics, Vancouver, BC, 2016.
- Obtain expansion of LGIs in SU(3)-coupled basis, then repeatedly apply symplectic raising operator to LGIs F. Q. Luo, Ph.D. thesis, University of Notre Dame (2014).
- Expand matrix elements in terms of LGI matrix elements using operator commutators (Suzuki and Hecht approach)
Y. Suzuki and K. T. Hecht, Nuc. Phys. A 455 (1986) 315.
J. Escher and J. P. Draayer, J. Math. Phys. 39 (1998) 51223.

SpNCCI recurrence scheme

- Expand Hamiltonian in terms of fundamental "unit tensor" operators $\mathcal{U}(a, b)$ (analogous to TBME expansion of two-body operators in terms of $c_{a}^{\dagger} c_{b}^{\dagger} c_{c} c_{d}$)

$$
H=\sum\langle a\|H\| b\rangle \mathcal{U}(a, b)
$$

- Expand only LGls in SU(3)-NCSM basis
- Compute seed matrix elements (LSU3shell) T. Dytrych et al., Compt. Phys. Commun. 207 (2016) 202.
- Compute matrix elements of $\mathcal{U}(a, b)$ via recurrence

$$
\begin{aligned}
\left\langle N^{\prime}\right||\mathcal{U} \| N\rangle & =\left\langle N^{\prime}\right||\mathcal{U} A \| N-2\rangle \\
& =\left\langle N^{\prime}\right||A \mathcal{U} \| N-2\rangle+\left\langle N^{\prime}\|[\mathcal{U}, A]\| N-2\right\rangle \\
& =\left\langle N^{\prime}-2\right||\mathcal{U} \| N-2\rangle+\left\langle N^{\prime}\|[\mathcal{U}, A]\| N-2\right\rangle
\end{aligned}
$$

Recap

- Ab initio NCCI calculations are computationally bound by the large basis size necessary for convergence - which arises, in large part, because of strong connections between low- $N_{\text {ex }}$ and high- $N_{\text {ex }}$ configurations induced by kinetic energy.
- SpNCCI basis states incorporate $\operatorname{Sp}(3, \mathbb{R}), \mathrm{SU}(3)$ and $\mathrm{SU}(2)$ symmetries.
- A symplectic irrep is generated by starting with the lowest $N_{\text {ex }}$ configuration and repeatedly acting with the symplectic raising operator A.

$$
A|N\rangle \rightarrow|N+2\rangle
$$

- Truncation by symplectic irrep allows us to include relevant high $N_{\text {ex }}$ configurations in basis without needing to include full $N_{\text {ex }}$ subspace.
- Matrix elements are computed recursively and so explicit construction of full basis is not necessary.

Initial results

- Examine convergence with $N_{\sigma, \text { max }}$
- Need to include all irreps strongly connected by interaction At what $N_{\max }$ does the interaction fade away and the kinetic energy dominate?

Initial results

- Examine convergence with $N_{\sigma, \text { max }}$
- Need to include all irreps strongly connected by interaction At what $N_{\max }$ does the interaction fade away and the kinetic energy dominate?

Recap

- Ab initio NCCI calculations are computationally bound by the large basis size necessary for convergence - which arises, in large part, because of strong connections between low- $N_{\text {ex }}$ and high $-N_{\text {ex }}$ configurations induced by kinetic energy.
- SpNCCI basis states incorporate $\operatorname{Sp}(3, \mathbb{R}), \mathrm{SU}(3)$ and $\mathrm{SU}(2)$ symmetries.
- A symplectic irrep is generated by starting with the lowest $N_{\text {ex }}$ configuration and repeatedly acting with the symplectic raising operator A.

$$
A|N\rangle \rightarrow|N+2\rangle
$$

- Truncation by symplectic irrep allows us to include relevant high N_{ex} configurations in basis without needing to include full $N_{\text {ex }}$ subspace.
- Matrix elements are computed recursively and so explicit construction of full basis is not necessary.
- We have initial results as of 5 days, 5 hours and 43 minutes ago.

Going forward

- Significant improvement can be made to SpNCCI code (memory usage and parallelization) to extend calculations to higher $N_{\sigma, \max }$ and $N_{\text {max }}$ (and heavier nuclei).
- Exploration of basis truncations: restrict basis to physically preferred LGl's
- Extract physically preferred transformed LGI set from wave functions in low $N_{\max }$ reference calculation
- Determine preferred LGI set from self consistency approach D. J. Rowe, Phys. Rev. Lett. 97 (2006) 202501.
- ...

