Probing Nuclear Forces in ab initio Nuclear Reactions

Progress in Ab Initio Techniques in Nuclear Physics
March 1 2017, TRIUMF,Vancouver

Angelo Calci I TRIUMF

Chiral EFT

SRG

Chiral NN+3N Interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,.

- standard interaction:
- NN @ N3LO: Entem \& Machleidt, 500MeV cutoff
- 3N @ N2LO: Navrátil, local cutoff, modifications of cutoff

Chiral NN+3N Interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,.

- standard interaction:
- NN @ N3LO: Entem \& Machleidt, 500MeV cutoff
- 3N @ N2LO: Navrátil, local cutoff, modifications of cutoff
chiral interactions are not unique:
- chiral order
- regularization
- fit of LECs

Chiral NN+3N Interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,.

- standard interaction:
- NN @ N3LO: Entem \& Machleidt, 500MeV cutoff
- 3N @ N2LO: Navrátil, local cutoff, modifications of cutoff
- \mathbf{N}^{2} LOsat interaction:
- $N N+3 N$: Ekström et al., nonlocal 450 MeV cutoff, simultaneous fit to NN data and selected many-body observables

Chiral NN+3N Interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,.

- standard interaction:
- NN @ N3LO: Entem \& Machleidt, 500MeV cutoff
- 3N @ N2LO: Navrátil, local cutoff, modifications of cutoff
- N^{2} LOsat interaction:
- $N N+3 N$: Ekström et al., nonlocal 450 MeV cutoff, simultaneous fit to NN data and selected many-body observables
- LENPIC interaction:
- NN up to N4LO: Epelbaum et al., semi-local cutoff
- 3 N up to N^{3} LO: under construction

Chiral NN+3N Interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,.

- standard interaction:
- NN @ N3LO: Entem \& Machleidt, 500MeV cutoff
- 3N @ N2LO: Navrátil, local cutoff, modifications of cutoff
- ${ }^{2}$ LOsat interaction:
- NN+3N: Ekström et al., nonlocal 450 MeV cutoff, simultaneous fit to NN data and selected many-body observables
- LENPIC interaction:
- NN up to N ${ }^{4}$ LO: Epelbaum et al., Hebeler
- 3 N up to $\mathrm{N}^{3} \mathrm{LO}$: under construction

Chiral NN+3N Interactions

Weinberg, van Kolck, Machleidt, Entem, Meissner, Epelbaum, Krebs, Bernard,.

- standard interaction:
- NN @ N3LO: Entem \& Machleidt, 500MeV cutoff
- 3N @ N2LO: Navrátil, local cutoff, modifications of cutoff
- \mathbf{N}^{2} LOsat interaction:
- NN+3N: Ekström et al., nonlocal 450 MeV cutoff, simultaneous fit to NN data and selected many-body observables
- LENPIC interaction:
- NN up to N4LO: Epelbaum et al.,

talk by Kai

 Hebeler- 3 N up to N^{3} LO: under construction
- $\mathrm{N}^{4} \mathrm{LO}(500)$:
- NN @ N4LO: Machleidt et al., 500 MeV cutoff

Similarity Renormalization Group (SRG)

accelerate convergence by pre-diagonalizing the Hamiltonian with respect to the many-body basis

- unitary transformation leads to evolution equation

$$
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \tilde{\mathrm{H}}_{\alpha}=\left[\eta_{\alpha}, \tilde{\mathrm{H}}_{\alpha}\right] \quad \text { with } \quad \eta_{\alpha}=(2 \mu)^{2}\left[\mathrm{~T}_{\mathrm{int}}, \tilde{\mathrm{H}}_{\alpha}\right]=-\eta_{\alpha}^{\dagger}
$$

advantages of SRG: flexibility and simplicity
3B-Jacobi HO matrix elements

Similarity Renormalization Group (SRG)

accelerate convergence by pre-diagonalizing the Hamiltonian with respect to the many-body basis

- unitary transformation leads to evolution equation

$$
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \tilde{\mathrm{H}}_{\alpha}=\left[\eta_{\alpha}, \tilde{\mathrm{H}}_{\alpha}\right] \quad \text { with } \quad \eta_{\alpha}=(2 \mu)^{2}\left[\mathrm{~T}_{\mathrm{int}}, \tilde{\mathrm{H}}_{\alpha}\right]=-\eta_{\alpha}^{\dagger}
$$

advantages of SRG: flexibility and simplicity
3B-Jacobi HO matrix elements

Continuum effects in Nuclei

ab initio description of nuclei

Continuum effects in Nuclei

ab initio description of nuclei

bound states \& spectroscopy

(IT-)NCSM

ab initio description of nuclear clusters

Continuum effects in Nuclei

ab initio description of nuclei

bound states \& spectroscopy
(IT-)NCSM traget nucleus projectile ab initio description of nuclear clusters

RGM
describing relative
motion of clusters

Continuum effects in Nuclei

ab initio description of nuclei

bound states \& spectroscopy (IT-)NCSM traget nucleus projectile ab initio description of nuclear clusters

resonances \& scattering states

RGM

describing relative motion of clusters

NCSM/RGM and NCSMC

 continuum effectsin spectroscopy

NCSM with Continuum (NCSMC)

- representing $\mathrm{H}\left|\psi^{/ \pi T}\right\rangle=E\left|\psi^{/ \pi T}\right\rangle$ using the over-complete basis

$$
\left|\Psi^{\prime \pi T}\right\rangle=\sum_{\lambda} c_{\lambda}\left|\Psi_{A} E_{\lambda} \|^{\pi} T\right\rangle+\sum_{\nu} \int \mathrm{d} r r^{2} \frac{\chi_{\nu}(r)}{r}\left|\xi_{\nu r}^{\prime \pi T}\right\rangle
$$

expansion in A-body relative motion of clusters NCSM eigenstates NCSM/RGM expansion

- leads to NCSMC equation

$$
\left(\begin{array}{cc}
H_{N C S M} & h \\
h & \mathcal{H}
\end{array}\right)\binom{c}{\chi(r) / r}=E\left(\begin{array}{ll}
\mathbb{1} & g \\
g & \mathbb{1}
\end{array}\right)\binom{c}{\chi(r) / r}
$$

NCSM with Continuum (NCSMC)

- representing $\mathrm{H}\left|\psi^{/ \pi T}\right\rangle=E\left|\psi^{/ \pi T}\right\rangle$ using the over-complete basis

$$
\left|\Psi^{J \pi T}\right\rangle=\sum_{\lambda} c_{\lambda}\left|\Psi_{A} E_{\lambda}{ }^{\pi} T\right\rangle+\sum_{\nu} \int \mathrm{d} r r^{2} \frac{\chi_{\nu}(r)}{r}\left|\xi_{v r}^{\prime \pi T}\right\rangle
$$

expansion in A-body NCSM eigenstates
relative motion of clusters NCSM/RGM expansion

- leads to NCSMC equation

$$
\left(\begin{array}{cc}
H_{N C S M} & h \\
h & \mathcal{H}
\end{array}\right)\binom{c}{\chi(r) / r}=E\left(\begin{array}{ll}
0 & g \\
g & \mathbb{1}
\end{array}\right)\binom{c}{\chi(r) / r}
$$

- with 3 N contributions in

\mathcal{H}
contains NCSM/RGM Hamiltonian kernel

Continuum effects and Nuclear Reactions

with
P. Navrátil, S. Quaglioni, R. Roth, J. Dohet-Eraly G. Hupin

Neutron-rich halo Nucleus ${ }^{11} \mathrm{Be}$

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in ${ }^{11} \mathrm{Be}$?

Angelo Calci, ${ }^{1,{ }^{*}}$ Petr Navrátil, ${ }^{1, \dagger}$ Robert Roth, ${ }^{2}$ Jérémy Dohet-Eraly, ${ }^{1, \hbar}$ Sofia Quaglioni, ${ }^{3}$ and Guillaume Hupin ${ }^{4,5}$
${ }^{1}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada ${ }^{2}$ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
${ }^{3}$ Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
${ }^{4}$ Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex, France
${ }^{5}$ CEA, DAM, DIF, F-91297 Arpajon, France

Spectrum

- parity inversion shell model predicts g.s. to be $\mathrm{J} \Pi=1 / 2^{-}$
- Halo structure
weakly bound $\mathrm{J}=1 / 2$ states spectrum dominated by $n-{ }^{10} \mathrm{Be}$

Neutron-rich halo Nucleus ${ }^{11} \mathrm{Be}$

Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in ${ }^{11} \mathrm{Be}$?

- Halo structure
weakly bound $\mathrm{J}=1 / 2$ states spectrum dominated by $n-{ }^{10} \mathrm{Be}$

${ }^{11}$ Be excitation spectrum

${ }^{11}$ Be excitation spectrum

${ }^{11}$ Be excitation spectrum

Variation of 3 N force

${ }^{11}$ Be excitation spectrum

${ }^{11} \mathrm{Be}$: Photodisintegration process \& E1 transition

$B\left(E 1: 1 / 2^{-} \rightarrow 1 / 2^{+}\right)\left[{ }^{2} \mathrm{fm}^{2}\right]$				
	NCSM	NCSMC	NCSMCpheno	exp.
NN+3N(400)	0.0005	-	0.146	0.102(2)*
$\mathrm{N}^{2} \mathrm{LO}_{\text {SAT }}$	0.0005	0.127	0.117	

*Kwan et al. Phys. Lett. B 732, 210 (2014)

- strongest known E1 transition between low-lying states (attributed to halo structure)
- reproduced only with continuum effects

- conflicting experimental measurements
- ab initio results:
- discriminate between measurements
- predict dip at $3 / 2$ resonance energy
${ }^{11} \mathrm{Be}$: Photodisintegration process \& E1 transition

$B(E 1: 1 / 2-\rightarrow 1 / 2+)\left[e^{2} \mathrm{fm}^{2}\right]$				
	NCSM	NCSMC	NCSMCpheno	exp.
NN+3N(400)	0.0005	-	0.146	
$\mathrm{N}^{2} \mathrm{LO}{ }_{\text {SAT }}$	0.0005	0.127	0.117	

*Kwan et al. Phys. Lett. B 732, 210 (2014)

- strongest known F between low-lying s (attributed to halo stru
- reproduced only with continuum effects
scattering and transition observables enable interesting investigations

$$
\gamma+{ }^{11} \operatorname{Be}\left(1 / 2^{+}\right)->{ }^{10} \operatorname{Be}(\text { g.s. })+\mathrm{n}
$$

- NN+3N(400) NCSMC-pheno

$$
\text { — N2LOSAT } \quad \text { NCSMC-pheno }
$$

$$
-\mathbf{N}^{2} \mathbf{L O}_{S A T}
$$

NCSMC

- Exp. RIKEN

$$
\times \text { Exp. GSI }
$$

- conflicting experimental measurements
- ab initio results:
- discriminate between measurements
- predict dip at 3/2- resonance energy

NCSMC with multi-reference normal-ordered (MR-NO) 3N forces

with
P. Navrátil, R. Roth, E. Gebrerufael

NCSM with Continuum (NCSMC)

- representing $\mathrm{H}\left|\psi^{/ \pi T}\right\rangle=E\left|\psi^{/ \pi T}\right\rangle$ using the over-complete basis

$$
\begin{array}{ll}
\left|\psi^{J \pi T}\right\rangle=\sum_{\lambda} c_{\lambda}\left|\Psi_{A} E_{\lambda}{ }^{\pi} T\right\rangle & +\sum_{\nu} \int \mathrm{d} r r^{2} \frac{\chi_{\nu}(r)}{r}\left|\xi_{\nu r}^{J \pi T}\right\rangle \\
\text { expansion in A-body } & \text { relative motion of clusters } \\
\text { NCSM eigenstates } & \text { NCSM/RGM expansion }
\end{array}
$$

- leads to NCSMC equation

$$
\left(\begin{array}{cc}
H_{N C S M} & h \\
h & \mathcal{H}
\end{array}\right)\binom{c}{\chi(r) / r}=E\left(\begin{array}{ll}
0 & g \\
g & \mathbb{1}
\end{array}\right)\binom{c}{\chi(r) / r}
$$

- with 3 N contributions in

\mathcal{H}

contains NCSM/RGM

 Hamiltonian Kernel
NCSM with Continuum (NCSMC)

- representing $\mathrm{H}\left|\psi^{/ \pi T}\right\rangle=E\left|\psi^{/ \pi T}\right\rangle$ using the over-complete basis

$$
\begin{aligned}
& \left|\Psi^{J \pi T}\right\rangle=\sum_{\lambda} c_{\lambda} \mid \Psi_{A} E_{\lambda^{\prime}} \\
& \text { expansion in A-body } \\
& \text { NCSM eigenstates }
\end{aligned}
$$

- leads to NCSMC equation

$$
\left(\begin{array}{cc}
H_{N C S M} & h \\
h & \mathcal{H}
\end{array}\right)\binom{c}{\chi(r) / r}=E\binom{0}{g}
$$

- with 3 N contributions in

$$
\begin{aligned}
& H_{\text {NCSM }} \\
& \text { covered by } \\
& \text { NCSM }
\end{aligned}
$$

$$
h
$$

$$
h
$$

\mathcal{H}

contains NCSM/RGM Hamiltonian Kernel

Derive NCSM/RGM Kernels

OB kernel

$$
\left.\begin{array}{rl}
& -{ }_{S D}<\epsilon_{\nu^{\prime} n^{\prime}}^{\mathcal{J} T}\left|\boldsymbol{V}_{0 N} \boldsymbol{T}_{A-1, A}\right| \epsilon_{\nu n}^{\mathcal{J} \pi T}>_{S D}= \\
= & -\frac{1}{A-1} \boldsymbol{V}_{0 N} \sum_{M_{1} m_{j}} \sum_{M_{T_{1}} m_{t}} \sum_{M_{1}^{\prime} m_{j}^{\prime}} \sum_{M_{T_{1}}^{\prime} m_{t}^{\prime}}\left(\begin{array}{cc|c}
I_{1} & j & \mathcal{J} \\
M_{1} & m_{j} & \mathcal{M}
\end{array}\right)\left(\begin{array}{cc|c}
T_{1} & \frac{1}{2} & T \\
M_{T_{1}} & m_{t} & M_{T}
\end{array}\right)\left(\begin{array}{cc|c}
I_{1}^{\prime} & j^{\prime} & \mathcal{J} \\
M_{1}^{\prime} & m_{j}^{\prime} & \mathcal{M}
\end{array}\right)\left(\begin{array}{cc}
T_{1}^{\prime} & \left.\frac{1}{2} \right\rvert\, c \\
M_{T_{1}}^{\prime} & m_{t}^{\prime}
\end{array} M_{T}\right.
\end{array}\right)
$$

1 B kernel

$$
\left.\begin{array}{rl}
& S D<\epsilon_{\nu^{\prime} n^{\prime}}^{\mathcal{J} \pi T}\left|\boldsymbol{V}{ }_{A}\right| \epsilon_{\nu n}^{\mathcal{J} \pi T}>_{S D} \\
= & \sum_{M_{1} m_{j}} \sum_{M_{T_{1}} m_{t}} \sum_{M_{1}^{\prime} m_{j}^{\prime}} \sum_{M_{T_{1} m_{t}^{\prime}}}\left(\begin{array}{cc|c}
I_{1} & j & \mathcal{J} \\
M_{1} & m_{j} & \mathcal{M}
\end{array}\right)\left(\begin{array}{cc|c}
T_{1} & \frac{1}{2} & T \\
M_{T_{1}} & m_{t} & M_{T}
\end{array}\right)\left(\begin{array}{cc|c}
I_{1}^{\prime} & j^{\prime} & \mathcal{J} \\
M_{1}^{\prime} & m_{j}^{\prime} & \mathcal{M}
\end{array}\right)\left(\begin{array}{cc}
T_{1}^{\prime} & \frac{1}{2} \\
M_{T_{1}}^{\prime} & m_{t}^{\prime}
\end{array} M_{T}\right.
\end{array}\right)
$$

2B kernel

Derive NCSM/RGM Kernels

OB kernel

dominant OB kernel contribution included in target eigenstates \Rightarrow only MR-NO 1B and 2B kernels contribute

1B kernel

```
    \({ }_{S D}<\epsilon_{\nu^{\prime} n^{\prime}}^{\mathcal{J} \pi T}\left|\boldsymbol{V}_{A}\right| \epsilon_{\nu n}^{\mathcal{J} \pi T}>_{S D}\)
\(=\sum_{M_{1} m_{j}} \sum_{M_{T_{1}} m_{t}} \sum_{M_{1}^{\prime} m_{j}^{\prime}} \sum_{M_{T_{1}}^{\prime} m_{t}^{\prime}}\left(\begin{array}{cc|c}I_{1} & j & \mathcal{J} \\ M_{1} & m_{j} & \mathcal{M}\end{array}\right)\left(\begin{array}{cc|c}T_{1} & \frac{1}{2} & T \\ M_{T_{1}} & m_{t} & M_{T}\end{array}\right)\left(\begin{array}{cc|c}I_{1}^{\prime} & j^{\prime} & \mathcal{J} \\ M_{1}^{\prime} & m_{j}^{\prime} & \mathcal{M}\end{array}\right)\left(\begin{array}{cc|c}T_{1}^{\prime} & \frac{1}{2} & T \\ M_{T_{1}}^{\prime} & m_{t}^{\prime} & M_{T}\end{array}\right)\)
\(\times \quad{ }_{S D}<\psi_{A-1}^{\prime} E_{1}^{\prime} I_{1}^{\prime \pi_{1}^{\prime}} M_{1}^{\prime} T_{1}^{\prime} M_{T_{1}}^{\prime} \mid \psi_{A-1} E_{1} I_{1}^{\pi_{1}} M_{1} T_{1} M_{T_{1}}>_{S D}\)
\(\times<n^{\prime} l^{\prime} j^{\prime} m_{j}^{\prime} \frac{1}{2} m_{t}^{\prime}\left|V_{A}\right| n l j m_{j} \frac{1}{2} m_{t}>\)
    \(-_{S D}<\epsilon_{\nu^{\prime} n^{\prime}}^{\mathcal{J} \pi}\left|\boldsymbol{V}_{A} \boldsymbol{T}_{A-1, A}\right| \epsilon_{\nu n}^{\mathcal{J} \pi T}>_{S D}\)
\(=-\frac{1}{A-1} \sum_{M_{1} m_{j}} \sum_{M_{T_{1}} m_{t}} \sum_{M_{1}^{\prime} m_{j}^{\prime}} \sum_{M_{T_{1}}^{\prime} m_{t}^{\prime}}\left(\begin{array}{cc|c}I_{1} & j & \mathcal{J} \\ M_{1} & m_{j} & \mathcal{M}\end{array}\right)\left(\begin{array}{cc|c}T_{1} & \frac{1}{2} & T \\ M_{T_{1}} & m_{t} & M_{T}\end{array}\right)\left(\begin{array}{cc|c}I_{1}^{\prime} & j^{\prime} & \mathcal{J} \\ M_{1}^{\prime} & m_{j}^{\prime} & \mathcal{M}\end{array}\right)\left(\begin{array}{cc|c}T_{1}^{\prime} & \frac{1}{2} & T \\ M_{T_{1}}^{\prime} & m_{t}^{\prime} & M_{T}\end{array}\right)\)
\(\times \sum_{\alpha_{A-1}} S D<\psi_{A-1}^{\prime} E_{1}^{\prime} I_{1}^{\prime} \pi_{1}^{\prime} M_{1}^{\prime} T_{1}^{\prime} M_{T_{1}}^{\prime}\left|\boldsymbol{a}_{n l j m_{j} m_{t}}^{\dagger} \boldsymbol{a}_{\alpha_{A-1}}\right| \psi_{A-1} E_{1} I_{1}^{\pi_{1}} M_{1} T_{1} M_{T_{1}}>_{S D}\)
\(\times<n^{\prime} l^{\prime} j^{\prime} m_{j}^{\prime} \frac{1}{2} m_{t}^{\prime}\left|\boldsymbol{V}_{A}\right| \alpha_{A-1}>\)
```

2B kernel

NCSMC: Impact of 3 N in Kernels

First application: ${ }^{12 N}$

- ideal candidate
weakly bound $\mathrm{J}=1^{+}$state dominated by $\mathrm{p}-{ }^{-11} \mathrm{C}$

${ }^{12} \mathrm{~N}$
- some low lying resonances not measured precisely
- ${ }^{11} \mathrm{C}(\mathrm{p}, \gamma)^{12} \mathrm{~N}$ can bypass triple-alpha process
- planed experiment at TUDA facility at TRIUMF

ab initio NCSMC

- include $\mathrm{p}-{ }^{-11} \mathrm{C}$ continuum (3/2-,1/2-,5/2-,3/2- states of ${ }^{11} \mathrm{C}$)
- include 4 negative and 6 positive parity states of ${ }^{12} \mathrm{~N}$
- MR-NO with respect to $\mathrm{N}_{\max }=0$ eigenstate of ${ }^{12} \mathrm{~N}$

${ }^{12} \mathrm{~N}$ spectrum with continuum effects

${ }^{12} \mathrm{~N}$ spectrum with continuum effects

12N spectrum with continuum effects

Probe chiral interaction in light nuclear scattering

n-4He: Standard interaction

$\mathrm{n}-4 \mathrm{He}$: Standard interaction

n-4He with N2LOsat

- $P_{3 / 2}-P_{1 / 2}$ splitting sensitive to details of nuclear force
- under- or overestimated by $\mathrm{NN}+3 \mathrm{~N}(400)$ or N^{2} LO SAT interaction

n-4 He with LENPIC interaction

- splitting underestimated without 3N interaction

$$
\begin{array}{r}
\hbar \Omega=24 \mathrm{MeV} \\
\alpha=0.08 \mathrm{fm}^{4} \\
E_{3 \max }=14
\end{array}
$$

n-4 He with LENPIC interaction

LENPIC
interaction
$\mathrm{N}^{2} \mathrm{LO}$
$R=1.0 \mathrm{fm}$
--NN
$+\mathrm{NN}+3 \mathrm{~N}$
$C_{D}=2,4,6$
C_{E} fittet
to Triton g.s.

$$
\begin{gathered}
\hbar \Omega=24 \mathrm{MeV} \\
\alpha=0.08 \mathrm{fm}^{4} \\
E_{3 \max }=14
\end{gathered}
$$

n-4 He with LENPIC interaction

March 12017

n-4 ${ }^{4}$ e with ${ }^{4}$ LO(500) interaction

- promising splitting properties of N4LO NN interaction

n-4He with ${ }^{4}$ L $\mathrm{O}(500)$ interaction

- promising splitting properties of $\mathrm{N}^{4} \mathrm{LO}(500) \mathrm{NN}$ interaction

N4LO(500) NN interaction for other observables?

Ground-State Energies in s-Shell

Ground-State Energies in s-Shell

Ground-State Energies in s-Shell

10B Ground-State

- requires 3 N force to describe right ground-state similar to standard ${ }^{\mathrm{N}} \mathrm{LO}$

160: Ground-State Energy

- requires repulsive 3 N force
- no significant SRG induced 4 N contributions

${ }^{16} 0$: Ground-State Energy

- requires repulsive 3 N force
- no significant SRG induced 4 N contributions

- no surprises in IMSRG calculations
- $\mathrm{N}^{4} \mathrm{LO}(500)$ is sufficiently soft

160: Ground-State Energy

counter-example:

- fully-local N2LO interaction used in Quantum Monte Carlo Gezerlis, Tews, Epelbaum et al. Phys. Rev. C 90, 054323 (2014)
- difficult to handle in harmonic oscillator basis

interaction for this cutoff is significantly harder
- Normal-Ordering approximation
- induced (IM)SRG many-body contributions
- insufficient knowledge of nuclear force provides largest uncertainties in ab initio calculations
- combination of NCSMC with MR-NO allows to include continuum effects at strongly reduced cost
- enables heavier targets and complexer projectiles
- splitting of $\mathrm{P}_{3 / 2}-\mathrm{P}_{1 / 2}$ phase shifts in ${ }^{5} \mathrm{He}$ can be used to constrain 3 N parameters
- novel LENPIC and $\mathrm{N}^{4} \mathrm{LO}(500) \mathrm{NN}$ interactions have promising properties
- 3 N needs to be added
- insufficient knowledge of nuclear force provides largest uncertainties in ab initio calculations
- combination of NCSMC with MR-NO allows to include continuum effects at strongly reduced cost
- enables heavier targets and complexer projectiles
- splitting of $\mathrm{P}_{3 / 2}-\mathrm{P}_{1 / 2}$ phase shifts in ${ }^{5} \mathrm{He}$ can be used to constrain 3 N parameters
- novel LENPIC and $\mathrm{N}^{4} \mathrm{LO}(500)$ NN interactions have promising properties
- 3 N needs to be added
fit CD_{D} from ${ }^{3} \mathrm{H} \beta$-decay poster by Peter Gysbers

Thank you! Merci!

- thanks to my collaborators

- P. Navrátil, R. Stroberg, J. Holt,
R. Kanungo, G. Hackman,
A. Kumar, A. Lennarz

TRIUMF Vancouver, Canada

- R. Roth, E. Gebrerufael,
K. Hebeler, A. Schwenk

TU Darmstadt, Germany

- J. Vary, P. Maris

Iowa State University, USA

- J. Dohet-Eraly

Istituto Nazionale di Fisica Nucleare, Pisa, Italy

LENPIC

- S. Quaglioni, C. Romero-Redondo LLNL Livermore, USA
- G. Hupin

Université Paris-Sud, France

- H. Hergert, S. Bogner MSU, USA

LLNL
Iuiunic

HOPPER

OLCF

Supplements

160 \& ${ }^{40} \mathrm{Ca}$: Ground-State

- requires repulsive 3 N force
- no surprises in IMSRG calculations

