Calculation and regularization of 3N interactions up to N3LO: status update and recent developments

Kai Hebeler
Vancouver, February 28, 2017

Progress in Ab Initio Techniques in Nuclear Physics

TECHNISCHE
UNIVERSITAT
DARMSTADT

Regularization
schemes for NN interactions
Separation of long- and short-range physics

$$
\begin{aligned}
\mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\
\mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\
\mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right)
\end{aligned}
$$

Regularization schemes for NN interactions

 $$
\begin{aligned} \mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\ \mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\ \mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right) \end{aligned}
$$

$$
V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \rightarrow \exp \left[-\left(\left(p^{2}+p^{\prime 2}\right) / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
$$

Regularization

 schemes for NN interactions$$
\begin{aligned}
\mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\
\mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\
\mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right)
\end{aligned}
$$

Separation of long- and short-range physics

nonlocal

$$
V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \rightarrow \exp \left[-\left(\left(p^{2}+p^{\prime 2}\right) / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
$$

Epelbaum, Glöckle, Meissner, NPA 747, 362 (2005) Entem, Machleidt, PRC 68, 04I00I (2003)

local
 (momentum space)

$$
V_{\mathrm{NN}}(\mathbf{q}) \rightarrow \exp \left[-\left(q^{2} / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}(\mathbf{q})
$$

Regularization

 schemes for NN interactions$$
\begin{array}{ll}
\mathbf{p}_{1}^{\prime} & \begin{array}{l}
\mathbf{p} \\
\mathbf{p}^{\prime} \\
\mathbf{q}=\left(\mathbf{p}_{1}-\mathbf{p}_{2}^{\prime}\right) / 2 \\
\left.\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2
\end{array} \\
\left.\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right)
\end{array}
$$

nonlocal

$$
V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \rightarrow \exp \left[-\left(\left(p^{2}+p^{2}\right) / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
$$

Epelbaum, Glöckle, Meissner, NPA 747, 362 (2005) Entem, Machleidt, PRC 68, 04I00I (2003)

local (momentum space)

$$
V_{\mathrm{NN}}(\mathbf{q}) \rightarrow \exp \left[-\left(q^{2} / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}(\mathbf{q})
$$

cf. Navratil, Few-body Systems 4I, II7 (2007)

local
 (coordinate space)

$$
\begin{aligned}
V_{\mathrm{NN}}^{\pi}(\mathbf{r}) & \rightarrow\left(1-\exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]\right) V_{\mathrm{NN}}^{\pi}(\mathbf{r}) \\
\delta(\mathbf{r}) & \rightarrow \alpha_{n} \exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]
\end{aligned}
$$

Regularization

 schemes for NN interactions$$
\begin{aligned}
\mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\
\mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\
\mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right)
\end{aligned}
$$

Separation of long- and short-range physics

nonlocal

$$
V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \rightarrow \exp \left[-\left(\left(p^{2}+p^{2}\right) / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
$$

Epelbaum, Glöckle, Meissner, NPA 747, 362 (2005) Entem, Machleidt, PRC 68, 041001 (2003)

$$
V_{\mathrm{NN}}(\mathbf{q}) \rightarrow \exp \left[-\left(q^{2} / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}(\mathbf{q})
$$

cf. Navratil, Few-body Systems 4I, I I7 (2007)
local
(coordinate space)

$$
\begin{aligned}
V_{\mathrm{NN}}^{\pi}(\mathbf{r}) & \rightarrow\left(1-\exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]\right) V_{\mathrm{NN}}^{\pi}(\mathbf{r}) \\
\delta(\mathbf{r}) & \rightarrow \alpha_{n} \exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]
\end{aligned}
$$

Gezerlis et. al, PRL, III, 03250 I (2013)
semi-local

$$
\begin{aligned}
V_{\mathrm{NN}}^{\pi}(\mathbf{r}) & \rightarrow\left(1-\exp \left[-\left(r^{2} / R^{2}\right)\right]\right)^{n} V_{\mathrm{NN}}^{\pi}(\mathbf{r}) \\
\delta(\mathbf{r}) & \rightarrow C \rightarrow \exp \left[-\left(\left(p^{2}+p^{\prime 2}\right) / \Lambda^{2}\right)^{n}\right] C
\end{aligned}
$$

Semi-local regularization of 3 NF up to $\mathrm{N}^{3} \mathrm{LO}$

Semi-local regularization of 3 NF up to $\mathrm{N}^{3} \mathrm{LO}$

$1 / m$

Computational strategy:

(I) calculate unregularized 3NF in sufficiently large partial-wave basis

Calculation of 3 N forces in momentum partial-wave representation

$\langle p q \alpha| V_{123}\left|p^{\prime} q^{\prime} \alpha^{\prime}\right\rangle \sim \sum_{m_{i}} \int d \hat{\mathbf{p}} d \hat{\mathbf{q}} d \hat{\mathbf{p}}^{\prime} d \hat{\mathbf{q}}^{\prime} Y_{l}^{m}(\hat{\mathbf{p}}) Y_{\bar{l}}^{\bar{m}}(\hat{\mathbf{q}})\langle\mathbf{p q} S T| V_{123}\left|\mathbf{p}^{\prime} \mathbf{q}^{\prime} S^{\prime} T^{\prime}\right\rangle Y_{l^{\prime}}^{m^{\prime}}\left(\hat{\mathbf{p}}^{\prime}\right) Y_{\bar{l}^{\prime}}^{\bar{m}^{\prime}}\left(\hat{\mathbf{q}}^{\prime}\right)$

traditional method:

- reduce dimension of angular integrals from 8 to 5 by using symmetry
- discretize angular integrals and perform all sums numerically

much more efficient method:

- use that all interaction contributions (except rel. corr.) are local:

$$
\begin{aligned}
\langle\mathbf{p q}| V_{123}\left|\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\rangle & =V_{123}\left(\mathbf{p}-\mathbf{p}^{\prime}, \mathbf{q}-\mathbf{q}^{\prime}\right) \\
& =V_{123}\left(p-p^{\prime}, q-q^{\prime}, \cos \theta\right)
\end{aligned}
$$

\rightarrow allows to perform all except for 3 integrals analytically

- only a few small discrete internal sums need to be performed for each external momentum and angular momentum

Semi-local regularization of 3 NF up to $\mathrm{N}^{3} \mathrm{LO}$

$1 / m$

Computational strategy:

(I) calculate unregularized 3NF in sufficiently large partial-wave basis
(2) fourier transform coordinate space regulator to momentum space

Semi-local regularization of 3 NF up to $\mathrm{N}^{3} \mathrm{LO}$

Computational strategy:

(I) calculate unregularized 3NF in sufficiently large partial-wave basis
(2) fourier transform coordinate space regulator to momentum space
(3) decompose regulator $f_{L R}$ in partial wave momentum basis

Semi-local regularization of 3 NF up to $\mathrm{N}^{3} \mathrm{LO}$

$f_{\mathrm{LR}}\left(r_{23}\right)$

$1 / m$

Computational strategy:

(I) calculate unregularized 3NF in sufficiently large partial-wave basis
(2) fourier transform coordinate space regulator to momentum space
(3) decompose regulator $f_{L R}$ in partial wave momentum basis
(4) perform convolution integrals:

$$
\langle p q \alpha| V_{123}^{\mathrm{reg}}\left|p^{\prime} q^{\prime} \alpha^{\prime}\right\rangle=\int d \tilde{q} \tilde{q}^{2} \int d \tilde{p} \tilde{p}^{2} \sum_{\tilde{\alpha}}\langle p q \alpha| V_{123}|\tilde{p} \tilde{q} \tilde{\alpha}\rangle\langle\tilde{q} \tilde{q} \tilde{\alpha}| f_{L R}\left|p^{\prime} q^{\prime} \alpha^{\prime}\right\rangle
$$

Semi-local regularization of 3 NF up to $\mathrm{N}^{3} \mathrm{LO}$

$f_{\mathrm{LR}}\left(r_{23}\right)$

$1 / m$

Computational strategy:

(I) calculate unregularized 3NF in sufficiently large partial-wave basis
(2) fourier transform coordinate space regulator to momentum space
(3) decompose regulator $f_{L R}$ in partial wave momentum basis
(4) perform convolution integrals:

$$
\langle p q \alpha| V_{123}^{\mathrm{reg}}\left|p^{\prime} q^{\prime} \alpha^{\prime}\right\rangle=\int d \tilde{q} \tilde{q}^{2} \int d \tilde{p} \tilde{p}^{2} \sum_{\tilde{\alpha}}\langle p q \alpha| V_{123}|\tilde{q} \tilde{q} \tilde{\alpha}\rangle\langle\tilde{q} \tilde{q} \tilde{\alpha}| f_{L R}\left|p^{\prime} q^{\prime} \alpha^{\prime}\right\rangle
$$

(5) regularize short-range parts in interactions with non-local regulator

Semi-local regularization of 3 NF up to $\mathrm{N}^{3} \mathrm{LO}$

$f_{\text {LR }}\left(r_{23}\right)$

$1 / m$

Computational strategy:

(I) calculate unregularized 3NF in sufficiently large partial-wave basis
(2) fourier transform coordinate space regulator to momentum space
(3) decompose regulator $f_{L R}$ in partial wave momentum basis
(4) perform convolution integrals:

$$
\langle p q \alpha| V_{123}^{\mathrm{reg}}\left|p^{\prime} q^{\prime} \alpha^{\prime}\right\rangle=\int d \tilde{q} \tilde{q}^{2} \int d \tilde{p} \tilde{p}^{2} \sum_{\tilde{\alpha}}\langle p q \alpha| V_{123}|\tilde{p} \tilde{q} \tilde{\alpha}\rangle\langle\tilde{q} \tilde{\alpha} \tilde{\alpha}| f_{L R}\left|p^{\prime} q^{\prime} \alpha^{\prime}\right\rangle
$$

(5) regularize short-range parts in interactions with non-local regulator
(6) antisymmetrize interactions (optional)

Calculation of convolution integrals: option one

$$
\begin{aligned}
V_{r e g}\left(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23}\right) & =V\left(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23}\right) F\left(r_{12}\right) F\left(r_{13}\right) F\left(r_{23}\right) \\
V_{r e g}\left(\mathbf{r}_{12}, \mathbf{r}_{13}\right) & =V\left(\mathbf{r}_{12}, \mathbf{r}_{13}\right) F\left(r_{12}\right) F\left(r_{13}\right) \\
V_{r e g}\left(\mathbf{r}_{12}\right) & =V\left(\mathbf{r}_{12}\right) F\left(r_{12}\right)
\end{aligned}
$$

$$
\text { with } F\left(r_{i j}\right)=\left(1-\exp \left(-r_{i j}^{2} / R^{2}\right)\right)^{n_{e x p}}
$$

Calculation of convolution integrals: option one

$$
\begin{aligned}
V_{r e g}\left(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23}\right) & =V\left(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23}\right) F\left(r_{12}\right) F\left(r_{13}\right) F\left(r_{23}\right) \\
V_{r e g}\left(\mathbf{r}_{12}, \mathbf{r}_{13}\right) & =V\left(\mathbf{r}_{12}, \mathbf{r}_{13}\right) F\left(r_{12}\right) F\left(r_{13}\right) \\
V_{r e g}\left(\mathbf{r}_{12}\right) & =V\left(\mathbf{r}_{12}\right) F\left(r_{12}\right)
\end{aligned}
$$

$$
\text { with } F\left(r_{i j}\right)=\left(1-\exp \left(-r_{i j}^{2} / R^{2}\right)\right)^{n_{e x p}}
$$

Problem:

for practical calculation of the convolution integrals we need to explicitly separate the delta function part

$$
\begin{aligned}
\langle\mathbf{p} \mathbf{q}| V_{\text {reg }}\left|\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\rangle & =\int d \tilde{\mathbf{p}} d \tilde{\mathbf{q}}\langle\mathbf{p} \mathbf{q}| V|\tilde{\mathbf{p}} \tilde{\mathbf{q}}\rangle\langle\tilde{\mathbf{p}} \tilde{\mathbf{q}}| R\left|\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\rangle \\
& =\underbrace{\left.\iint d \tilde{\mathbf{p}} d \tilde{\mathbf{q}}\langle\mathbf{p q}| V|\tilde{\mathbf{p}} \tilde{\mathbf{q}}\rangle\langle\tilde{\mathbf{p}} \tilde{\mathbf{q}}| R-1\left|\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\rangle\right]}_{\begin{array}{c}
\text { delicate }
\end{array}}+\underset{\text { cancellation! }}{\langle\mathbf{p q}| V\left|\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\rangle}
\end{aligned}
$$

Calculation of convolution integrals: option one
in practice the cancellation needs to
happen between even more than two terms

Calculation of convolution integrals: option one

in practice the cancellation needs to happen between even more than two terms

The regulator can be Fourier transformed analytically by expanding all binomials and decompose them in partial waves separately:

$$
\begin{aligned}
& \tilde{R}_{1}=\int d^{3} \mathbf{r}_{12} d^{3} \mathbf{r}_{23} e^{-i q_{1} \cdot \mathbf{r}_{12}} e^{-i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} e^{-\alpha_{12} r_{12}^{2} / R_{0}^{2}}=(2 \pi)^{3} \delta\left(\mathbf{q}_{3}\right)\left(\frac{\pi R_{0}^{2}}{\alpha_{12}}\right)^{3 / 2} e^{-R_{R 2}^{2} q_{1}^{2} /\left(4 \alpha_{12}\right)} \\
& \tilde{R}_{2}=\int d^{3} \mathbf{r}_{12} d^{3} \mathbf{r}_{23} e^{-i q_{1} \cdot \mathbf{r}_{12}} e^{-i q_{3} \mathbf{r}_{23}} e^{-\alpha_{13} r_{13}^{2} / R_{0}^{2}}=(2 \pi)^{3} \delta\left(\mathbf{q}_{2}\right)\left(\frac{\pi R_{0}^{2}}{\alpha_{13}}\right)^{3 / 2} e^{-R_{0}^{2} q_{1}^{2} /\left(\alpha \alpha_{13}\right)} \\
& \tilde{R}_{3}=\int d^{3} \mathbf{r}_{12} d^{3} \mathbf{r}_{23} e^{-i q_{1} \cdot \mathbf{r}_{12}} e^{-i \mathbf{q}_{3} \mathbf{r}_{23}} e^{-\alpha_{23} r_{23}^{2} / R_{0}^{2}}=(2 \pi)^{3} \delta\left(\mathbf{q}_{1}\right)\left(\frac{\pi R_{0}^{2}}{\alpha_{23}}\right)^{3 / 2} e^{-R_{0}^{2} \sigma_{3}^{2} /\left(4 \alpha_{23}\right)} \\
& \tilde{R}_{4}=\int d^{3} \mathbf{r}_{12} d^{3} \mathbf{r}_{23} e^{-i \mathbf{q}_{1} \cdot \mathbf{r}_{12}} e^{-i q_{3} \cdot \mathbf{r}_{23}} e^{-\left(\alpha_{11} r_{12}^{2}+\alpha_{13} r_{13}^{2}\right) / R_{0}^{2}}=\left(\frac{\pi R_{0}^{2}}{\alpha_{12}}\right)^{3 / 2}\left(\frac{\pi R_{0}^{2}}{\alpha_{13}}\right)^{3 / 2} e^{-R_{0}^{2} q_{2}^{2} /\left(4 \alpha_{12}\right)} e^{-R_{0}^{2} q_{3}^{2} /\left(4 \alpha_{13}\right)} \\
& \tilde{R}_{5}=\int d^{3} \mathbf{r}_{12} d^{3} \mathbf{r}_{23} e^{-i \mathbf{q}_{1} \cdot \mathbf{r}_{12}} e^{-i q_{3} \cdot r_{23}} e^{-\left(\alpha_{11} r_{12} r_{12}^{2}+\alpha_{23} r_{23}^{2}\right) / R_{0}^{2}}=\left(\frac{\pi R_{0}^{2}}{\alpha_{12}}\right)^{3 / 2}\left(\frac{\pi R_{0}^{2}}{\alpha_{23}}\right)^{3 / 2} e^{-R_{0}^{2} q_{1}^{2} /\left(4 \alpha_{12}\right)} e^{-R_{0}^{2} q_{3}^{2} /\left(4 \alpha_{23}\right)} \\
& \tilde{R}_{6}=\int d^{3} \mathbf{r}_{12} d^{3} \mathbf{r}_{23} e^{-i \mathbf{q}_{1} \cdot \mathbf{r}_{12}} e^{-i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} e^{-\left(\alpha_{13} r_{13}^{2}+\alpha_{23} r_{23}^{2}\right) / R_{0}^{2}}=\left(\frac{\pi R_{0}^{2}}{\alpha_{13}}\right)^{3 / 2}\left(\frac{\pi R_{0}^{2}}{\alpha_{23}}\right)^{3 / 2} e^{-R_{0}^{2} q_{1}^{2} /\left(4 \alpha_{13}\right)} e^{-R_{0}^{2} q_{2}^{2} /\left(4 \alpha_{23}\right)} \\
& \tilde{R}_{7}=\int d^{3} \mathbf{r}_{12} d^{3} \mathbf{r}_{23} e^{-i q_{1} \cdot \mathbf{r}_{12}} e^{-i q_{3} \cdot \mathbf{r}_{23}} e^{-\left(\alpha_{12} r_{12}^{2}+\alpha_{13} r_{13}^{2}+\alpha_{23} r_{23}^{2}\right) / R_{0}^{2}}=\left(\frac{\pi^{2} R_{0}^{4}}{\alpha_{12} \alpha_{13}+\alpha_{12} \alpha_{23}+\alpha_{13} \alpha_{23}}\right)^{3 / 2} \exp [\ldots]
\end{aligned}
$$

Calculation of convolution integrals: option one

in practice the cancellation needs to happen between even more than two terms

The regulator can be Fourier transformed analytically by expanding all binomials and decompose them in partial waves separately:

Calculation of convolution integrals: option one

that means for the ring topology we obtain:

$$
V_{\text {reg }}\left(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23}\right)=V\left(\mathbf{r}_{12}, \mathbf{r}_{13}, \mathbf{r}_{23}\right) F\left(r_{12}\right) F\left(r_{13}\right) F\left(r_{23}\right)
$$

$$
R\left(r_{12}, r_{13}, r_{23}\right)=\left(1-e^{-r_{12}^{2} / R_{0}^{2}}\right)^{n}\left(1-e^{-r_{13}^{2} / R_{0}^{2}}\right)^{n}\left(1-e^{-r_{23}^{2} / R_{0}^{2}}\right)^{n}
$$

$$
V_{\text {reg }}=V+\tilde{R}_{123} V+\tilde{R}_{3} V+P_{123} \tilde{R}_{3} P_{123}^{-1} V+P_{123}^{-1} \tilde{R}_{3} P_{123} V
$$

numerical problems, especially at large momenta:

- for large Jacobi momenta $V_{\text {reg }} \rightarrow 0$, but V does not!
- very delicate cancellation necessary

Calculation of convolution integrals: option two: use preregularization consider a N2LO long-range topology:

$$
V\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=\int \frac{d \mathbf{q}_{1}}{(2 \pi)^{3}} \int \frac{d \mathbf{q}_{2}}{(2 \pi)^{3}} e^{i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} V\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)
$$

Calculation of convolution integrals: option two: use preregularization

consider a N2LO long-range topology:

$$
V\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=\int \frac{d \mathbf{q}_{1}}{(2 \pi)^{3}} \int \frac{d \mathbf{q}_{2}}{(2 \pi)^{2}} e^{i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} V\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)
$$

for the calculation of the regularized interaction we insert an identity

$$
V_{\mathrm{reg}}\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=V\left(\mathbf{r}_{13}, \mathbf{r}_{23} \frac{Q\left(r_{13}^{2}\right)}{Q\left(r_{13}^{2}\right)} \frac{Q\left(r_{23}^{2}\right)}{Q\left(r_{23}^{2}\right)}\left(1-e^{-r_{13}^{2} / R^{2}}\right)^{6}\left(1-e^{-r_{23}^{2} / R^{2}}\right)^{6}\right.
$$

Calculation of convolution integrals: option two: use preregularization

consider a N2LO long-range topology:
$V\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=\int \frac{d \mathbf{q}_{1}}{(2 \pi)^{3}} \int \frac{d \mathbf{q}_{2}}{(2 \pi)^{3}} e^{i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} V\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)$
for the calculation of the regularized interaction we insert an identity

$$
V_{\mathrm{reg}}\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=V\left(\mathbf{r}_{13}, \mathbf{r}_{23} \frac{Q\left(r_{13}^{2}\right)}{Q\left(r_{13}^{2}\right)} \frac{Q\left(r_{23}^{2}\right)}{Q\left(r_{23}^{2}\right)}\left(1-e^{-r_{13}^{2} / R^{2}}\right)^{6}\left(1-e^{-r_{23}^{2} / R^{2}}\right)^{6}\right.
$$

and define a preregularized interaction:
$V_{\text {prereg }}\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)=\int d \mathbf{r}_{13} \int d \mathbf{r}_{23} e^{-i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{-i q_{3} \cdot r_{23}} Q\left(r_{13}^{2}\right) Q\left(r_{23}^{2}\right) V\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=Q\left(-\Delta_{q_{2}}\right) Q\left(-\Delta_{q_{3}}\right) V\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)$

Calculation of convolution integrals: option two: use preregularization

consider a N2LO long-range topology:
$V\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=\int \frac{d \mathbf{q}_{1}}{(2 \pi)^{3}} \int \frac{d \mathbf{q}_{2}}{(2 \pi)^{3}} e^{i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} V\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)$
for the calculation of the regularized interaction we insert an identity

$$
V_{\mathrm{reg}}\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=V\left(\mathbf{r}_{13}, \mathbf{r}_{23} \frac{Q\left(r_{13}^{2}\right)}{Q\left(r_{13}^{2}\right)} \frac{Q\left(r_{23}^{2}\right)}{Q\left(r_{23}^{2}\right)}\left(1-e^{-r_{13}^{2} / R^{2}}\right)^{6}\left(1-e^{-r_{23}^{2} / R^{2}}\right)^{6}\right.
$$

and define a preregularized interaction:
$V_{\text {prereg }}\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)=\int d \mathbf{r}_{13} \int d \mathbf{r}_{23} e^{-i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{-i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} Q\left(r_{13}^{2}\right) Q\left(r_{23}^{2}\right) V\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=Q\left(-\Delta_{q_{2}}\right) Q\left(-\Delta_{q_{3}}\right) V\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)$
the preregularized regulator reads accordingly:

$$
R_{\text {prereg }}\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)=\int \frac{d \mathbf{r}_{13}}{(2 \pi)^{3}} \int \frac{d \mathbf{r}_{23}}{(2 \pi)^{3}} e^{-i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{-i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} \frac{\left(1-e^{-r_{13}^{2} / R^{2}}\right)^{6}\left(1-e^{-r_{23}^{2} / R^{2}}\right)^{6}}{Q\left(r_{13}^{2}\right) Q\left(r_{23}^{2}\right)}
$$

Calculation of convolution integrals: option two: use preregularization

consider a N2LO long-range topology:
$V\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=\int \frac{d \mathbf{q}_{1}}{(2 \pi)^{3}} \int \frac{d \mathbf{q}_{2}}{(2 \pi)^{3}} e^{i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} V\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)$
for the calculation of the regularized interaction we insert an identity

$$
V_{\mathrm{reg}}\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=V\left(\mathbf{r}_{13}, \mathbf{r}_{23} \frac{Q\left(r_{13}^{2}\right)}{Q\left(r_{13}^{2}\right)} \frac{Q\left(r_{23}^{2}\right)}{Q\left(r_{23}^{2}\right)}\left(1-e^{-r_{13}^{2} / R^{2}}\right)^{6}\left(1-e^{-r_{23}^{2} / R^{2}}\right)^{6}\right.
$$

and define a preregularized interaction:
$V_{\text {prereg }}\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)=\int d \mathbf{r}_{13} \int d \mathbf{r}_{23} e^{-i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{-i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} Q\left(r_{13}^{2}\right) Q\left(r_{23}^{2}\right) V\left(\mathbf{r}_{13}, \mathbf{r}_{23}\right)=Q\left(-\Delta_{q_{2}}\right) Q\left(-\Delta_{q_{3}}\right) V\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)$
the preregularized regulator reads accordingly:

$$
R_{\text {prereg }}\left(\mathbf{q}_{2}, \mathbf{q}_{3}\right)=\int \frac{d \mathbf{r}_{13}}{(2 \pi)^{3}} \int \frac{d \mathbf{r}_{23}}{(2 \pi)^{3}} e^{-i \mathbf{q}_{2} \cdot \mathbf{r}_{13}} e^{-i \mathbf{q}_{3} \cdot \mathbf{r}_{23}} \frac{\left(1-e^{-r_{13}^{2} / R^{2}}\right)^{6}\left(1-e^{-r_{23}^{2} / R^{2}}\right)^{6}}{Q\left(r_{13}^{2}\right) Q\left(r_{23}^{2}\right)}
$$

For $Q\left(r^{2}\right)=r^{2}, r^{4}$ all integrals are finite and can be calculated without subtraction!

Calculation of convolution integrals: option two: use preregularization

comments and status:

- each application of Laplacians leads to more pronounced peak structures for interactions, try to minimize number of derivatives

Calculation of convolution integrals: option two: use preregularization

comments and status:

- each application of Laplacians leads to more pronounced peak structures for interactions, try to minimize number of derivatives

$$
f(q)=\frac{q^{2}}{q^{2}+m_{\pi}^{2}}
$$

- finished calculations of all N2LO matrix elements and also N3LO 2picontact matrix elements (using $Q\left(r^{2}\right)=r^{2}$) up to $J=7 / 2$

Calculation of convolution integrals: option two: use preregularization

comments and status:

- each application of Laplacians leads to more pronounced peak structures for interactions, try to minimize number of derivatives

$$
f(q)=\frac{q^{2}}{q^{2}+m_{\pi}^{2}}
$$

- finished calculations of all N2LO matrix elements and also N3LO 2picontact matrix elements (using $\mathrm{Q}\left(\mathrm{r}^{2}\right)=r^{2}$) up to $\mathrm{J}=7 / 2$
- good agreement with previously calculated 3 H expectation values

Calculation of convolution integrals: option two: use preregularization

- finished calculations of all N2LO matrix elements and also N3LO 2picontact matrix elements (using $Q\left(r^{2}\right)=r^{2}$) up to $J=7 / 2$
- good agreement with previously calculated 3 H expectation values
- excellent agreement with Andreas' results on matrix element level
- no numerical problems in first scattering benchmark calculations (Evgeny)

Contributions of individual topologies in ${ }^{3} \mathrm{H}$ (nonlocal)

- contributions of individual contributions depend sensitively on details
- N3LO contributions not suppressed compared to N2LO
- perturbativeness of 3NF strongly depends on NN interaction

Contributions of individual topologies in ${ }^{3} \mathrm{H}$ (semi-local)

- contributions of individual topologies very similar for all cutoffs R at N3LO
- N3LO contributions significantly suppressed compared to N2LO!
- 3NF behaves perturbatively

Hartree-Fock energy of infinite matter (based on old mat. elems.)

- contributions from semi-local 3NF significantly smaller
- partial wave-convergence comparable for both regulators

Hartree-Fock energy of infinite matter (based on old mat. elems.)

- contributions from semi-local 3NF significantly smaller
- partial wave-convergence comparable for both regulators

Equation of state of symmetric nuclear matter: nuclear saturation

Equation of state of symmetric nuclear matter: nuclear saturation

Equation of state of symmetric nuclear matter: nuclear saturation

intermediate (CD_{D}) and short-range PRC(R) 83, 03I30I (201I) (C_{E}) 3 NF couplings fitted to few-body systems at different resolution scales:
$E_{3 \mathrm{H}}=-8.482 \mathrm{MeV} \quad r_{4 \mathrm{He}}=1.464 \mathrm{fm}$

Equation of state of symmetric nuclear matter: nuclear saturation

intermediate (CD_{D}) and short-range (C_{E}) 3 NF couplings fitted to few-body systems at different resolution scales: $E_{3_{\mathrm{H}}}=-8.482 \mathrm{MeV} \quad r_{4} \mathrm{He}=1.464 \mathrm{fm}$

Drischler, KH, Schwenk, PRC93, 054314 (2016)

Ab initio calculations of heavier nuclei

Binder et al., Phys. Lett B 736, I I9 (2014)

Ab initio calculations of heavier nuclei

- significant discrepancies to experimental data for heavy nuclei for (most of) presently used nuclear interactions
- significance of realistic nuclear matter properties for heavier nuclei?
- need to quantify theoretical uncertainties

Efficient many-body framework for nuclear matter

Developer:

Goal:

Develop efficient framework that allows to calculate dense matter (runtime \sim few minutes). Suitable for incorporating information of nuclear matter in fitting frameworks for nuclear forces.

Efficient many-body framework for nuclear matter

Goal:

Develop efficient framework that allows to calculate dense matter (runtime \sim few minutes). Suitable for incorporating information of nuclear matter in fitting frameworks for nuclear forces.

Strategy:

Implementation of NN and 3 N forces without of partial wave decomposition.
Calculate MBPT diagrams NN-complete up to 4th order by sampling phase space integrals in vector basis using Monte-Carlo techniques.

Efficient many-body framework for nuclear matter

Developer: Christian Drischler

Goal:

Develop efficient framework that allows to calculate dense matter (runtime \sim few minutes). Suitable for incorporating information of nuclear matter in fitting frameworks for nuclear forces.

Strategy:

Implementation of NN and 3 N forces without of partial wave decomposition.
Calculate MBPT diagrams NN-complete up to 4th order by sampling phase space integrals in vector basis using Monte-Carlo techniques.

Status:

Implementation of NN plus 3 N forces up to N3LO complete.
Implementation of non-local NN and 3 N interactions.
Ongoing benchmarks regarding required number of sampling points.

Efficient many-body framework
Developer: Christian Drischler for nuclear matter
first results for some N2LO sim potentials

$\mathrm{N}^{2} \mathrm{LOsim}$	$E_{N N}^{(3)}\left(n_{0}\right)[\mathrm{MeV}]$	$E_{N N}^{(4)}\left(n_{0}\right)[\mathrm{MeV}]$	$E_{\text {tot }}^{(I V)}\left(n_{0}\right)[\mathrm{MeV}]$
450 MeV	$\mathbf{+ 1 . 1}$	$\mathbf{+ 0 . 3}$	$\mathbf{- 1 5 . 4}$
500 MeV	$\mathbf{+ 1 . 6}$	$\mathbf{- 1 . 5}$	$\mathbf{- 1 9 . 3}$
550 MeV	+3.3	$\mathbf{- 4 . 1}$	$\mathbf{- 2 5 . 4}$

Status and achievements

significant increase in scope of ab initio many-body frameworks
remarkable agreement between different ab intio many-body methods

> discrepancies to experiment dominated by deficiencies of present nuclear interactions

Current developments and open questions

> presently active efforts to
> develop improved nuclear interactions
(fits of LECs, power counting, regularization, incorporation of NM info?,...)
Key goals
unified study of nuclei, nuclear matter and reactions based on novel interactions
systematic estimates of theoretical uncertainties

