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Calculation of 3N forces in momentum 
partial-wave representation

traditional method:
• reduce dimension of angular integrals from 8 to 5 by using symmetry

• discretize angular integrals and perform all sums numerically

hpq|V123|p0q0i = V123(p� p0,q� q0
)

= V123(p� p0, q � q0, cos ✓)

much more efficient method:
• use that all interaction contributions (except rel. corr.) are local:

       allows to perform all except for 3 integrals analytically

• only a few small discrete internal sums need to be 

performed for each external momentum and angular momentum

hpq↵|V123|p0q0↵0i ⇠
X
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Z
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l (p̂)Y m̄
l̄ (q̂) hpqST |V123|p0q0S0T 0iY m0

l0 (p̂0)Y m̄0

l̄0 (q̂0)



1/m

(a) (b) (c) (d) (e) (f) (g)

Semi-local regularization of 3NF up to N3LO

fLR(r12) fLR(r13) fLR(r13)fSR fSR fLR(r12) fLR(r13) fLR(r12) fLR(r13)

fLR(r23)

fSR fLR(r13)

Computational strategy:
(1) calculate unregularized 3NF in sufficiently large partial-wave basis 

(2) fourier transform coordinate space regulator to momentum space
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Calculation of convolution integrals:
option one

Vreg(r12, r13, r23) = V (r12, r13, r23)F (r12)F (r13)F (r23)
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Problem:
for practical calculation of the convolution integrals we need to explicitly 

separate the delta function part

hpq|Vreg|p0q0i =
Z

dp̃dq̃ hpq|V |p̃q̃i hp̃q̃|R|p0q0i

=

Z
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delicate
cancellation!
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happen between even more than two terms
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in practice the cancellation needs to 
happen between even more than two terms

The regulator can be Fourier transformed analytically by expanding all 
binomials and decompose them in partial waves separately:
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hard to decompose in partial waves for  

q2 = p� p0 � q� q0

2
,q3 = �p+ p0 � q� q0

2

use instead:

R̃1 = P123R̃3P
�1
123



Calculation of convolution integrals:
option one

Vreg = V + R̃123V + R̃3V + P123R̃3P
�1
123V + P�1

123R̃3P123V

Vreg(r12, r13, r23) = V (r12, r13, r23)F (r12)F (r13)F (r23)

that means for the ring topology we obtain:

numerical problems, especially at large momenta:

• for large Jacobi momenta              , but     does not! 

• very delicate cancellation necessary

Vreg ! 0 V
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2
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2
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consider a N2LO long-range topology:
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option two: use preregularization
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For Q(r2) = r2,r4 all integrals are finite and can be calculated without subtraction!
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• each application of Laplacians leads to more pronounced peak 

structures for interactions, try to minimize number of derivatives
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Calculation of convolution integrals:
option two: use preregularization

comments and status:

f(q)
f 00(q)
f (4)(q)

• finished calculations of all N2LO matrix elements and also N3LO 2pi-

contact matrix elements (using Q(r2) = r2) up to J=7/2

• good agreement with previously calculated 3H expectation values

• excellent agreement with Andreas’ results on matrix element level

• no numerical problems in first scattering benchmark calculations (Evgeny)
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Contributions of individual topologies in 3H (nonlocal)
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PRC 91, 044001 (2015)

• contributions of individual contributions depend sensitively on details

• N3LO contributions not suppressed compared to N2LO

• perturbativeness of 3NF strongly depends on NN interaction 
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Contributions of individual topologies in 3H (semi-local)

• contributions of individual 
  topologies very similar for all
  cutoffs R at N3LO

• N3LO contributions significantly
   suppressed compared to N2LO!

• 3NF behaves perturbatively
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Uniform interior is a clear 
manifestation of nuclear 
saturation, namely the 

existence of an equilibrium 
density   

Nuclear Saturation  
A Hallmark of the Nuclear DynamicsOverview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

Equation of state of symmetric nuclear matter:
nuclear saturation

Batty et. al, 
Karlsruhe (1987)
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Ab initio calculations of heavier nuclei
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014)

coupled cluster (CC) framework



Ab initio calculations of heavier nuclei

• significant discrepancies to experimental data for heavy nuclei for 

(most of) presently used nuclear interactions

• significance of realistic nuclear matter properties for heavier nuclei?

• need to quantify theoretical uncertainties
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ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014)

• power counting?

• missing NN and many-body contributions? 

• optimized fitting procedures?, 

• selection of fitting observables 
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coupled cluster (CC) framework

in-medium SRG (IMSRG) framework
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Nuclear Equation of State 
from ab-initio point-of-view
First Results: Isospin-Symmetric Matter
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discrepancies to experiment dominated by 
deficiencies of present nuclear interactions

remarkable agreement between 
different ab intio many-body methods

significant increase in scope of 
ab initio many-body frameworks

systematic estimates of
theoretical uncertainties

unified study of nuclei, nuclear matter and 
reactions based on novel interactions

presently active efforts to 
develop improved nuclear interactions

(fits of LECs, power counting, regularization, incorporation of NM info?,...)

Status and achievements

Current developments and open questions

Key goals


