Quantum Monte Carlo calculations of two neutrons in a finite volume with chiral EFT interactions

Ingo Tews (Institute for Nuclear Theory)

In collaboration with **P. Klos**, J. Lynn, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, A. Schwenk,...

Progress in Ab Initio Techniques in Nuclear Physics, March 3rd, 2017, TRIUMF, Vancouver, Canada

Motivation

Quantum Monte Carlo method

• Need of local interactions (depend only on $r = r_i - r_j$)

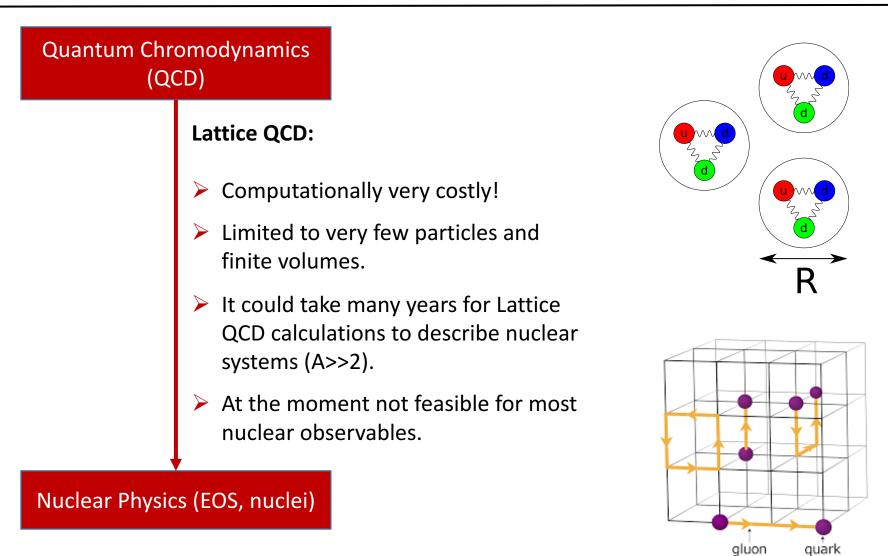
Local chiral interactions Gezerlis, IT et al., PRL (2013) & PRC (2014), IT et al., PRC (2016), Lynn, IT et al., PRL (2016)

> Some results for QMC with local chiral interactions

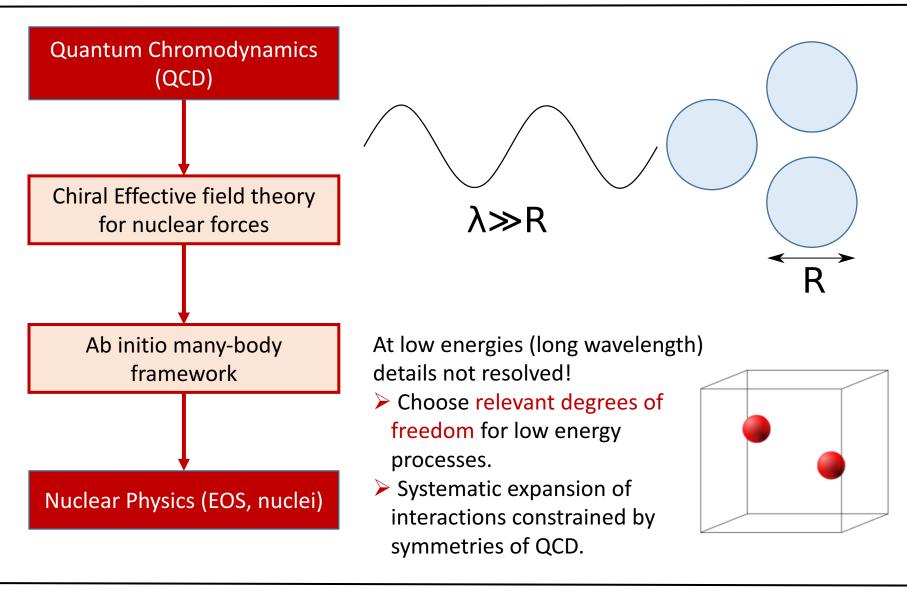
Two neutrons in a box Klos, Lynn, IT et al., PRC (2016

Excited states

➢ Summary



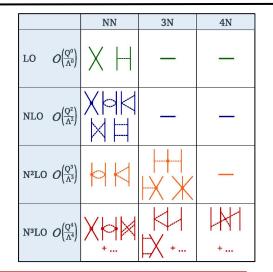
Motivation



Motivation

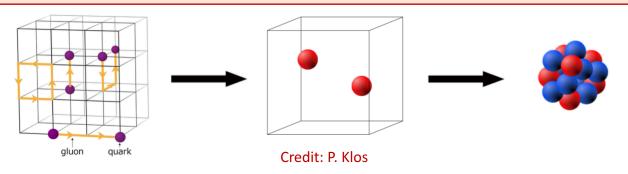
Systematic expansion of nuclear forces in low momenta Q over breakdown scale Λ_b :

- Pions and nucleons as explicit degrees of freedom.
- Long-range physics explicit, short-range physics expanded in general operator basis.
- Couplings (LECs) fit to experimental data.
- What if data scarce or nonexistent?



Long-term goal: Bridge the gap by matching of chiral EFT couplings to lattice QCD results to enable fully QCD-based chiral EFT predictions

Connect ab-initio nuclear physics to the underlying theory of QCD by studying, e.g., few-nucleon (few-neutron) systems in finite volume with QMC



Solve the many-body Schrödinger equation:

$$H |\psi\rangle = -\frac{\partial}{\partial \tau} |\psi\rangle, \qquad \tau = it$$

$$\psi(R,\tau) = \int dR'^{3N} \langle R| e^{-(T+V)\tau} |R'\rangle \psi(R',0)$$

Basic steps:

Choose trial wavefunction which overlaps with the ground state

$$|\psi(R,0)\rangle = |\psi_T(R,0)\rangle = \sum_i c_i |\phi_i\rangle \rightarrow \sum_i c_i e^{-(E_i - E_0)\tau} |\phi_i\rangle$$

 \succ Evaluate propagator for small timestep $\Delta \tau$, feasible only for local potentials

Make consecutive small time steps using Monte Carlo techniques to project out ground state

$$|\psi(R,\tau)\rangle o |\phi_0\rangle \quad \text{for} \quad \tau \to \infty$$

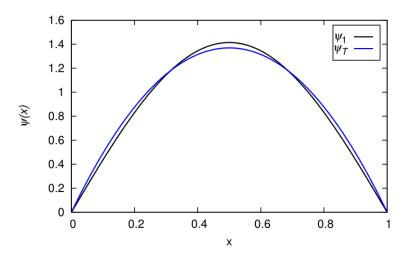
More details:

Carlson, Gandolfi, Pederiva, Pieper, Schiavilla, Schmidt, Wiringa, RMP (2015)

$$\psi_n(x) = \sqrt{2}\sin(n\pi x), \quad E_n = \frac{n^2\pi^2}{2}$$

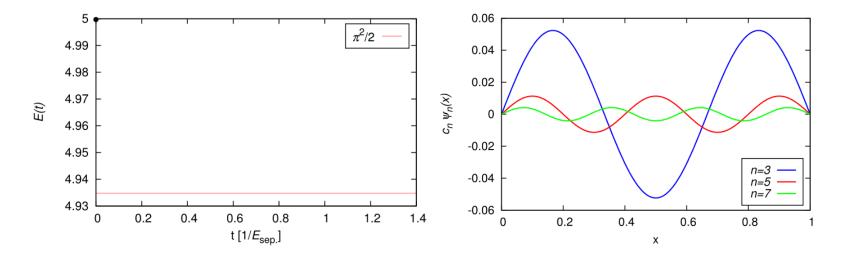
Basic steps:

Choose parabolic trial wavefunction which overlaps with the ground state Animation by Joel Lynn, TU Darmstadt



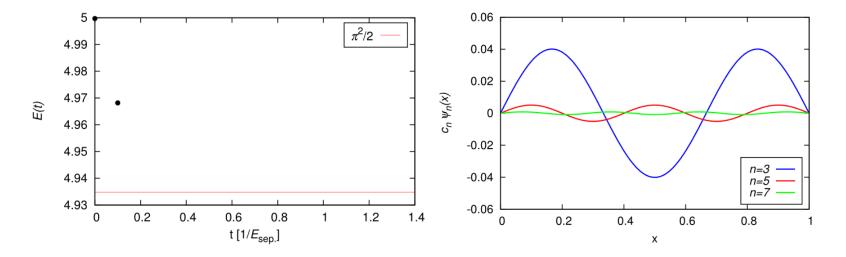
$$\psi_n(x) = \sqrt{2}\sin(n\pi x), \quad E_n = \frac{n^2\pi^2}{2}$$

► Make consecutive small timesteps,
$$\tau = 0.0 \left(\frac{1}{E_{sep}}\right)$$



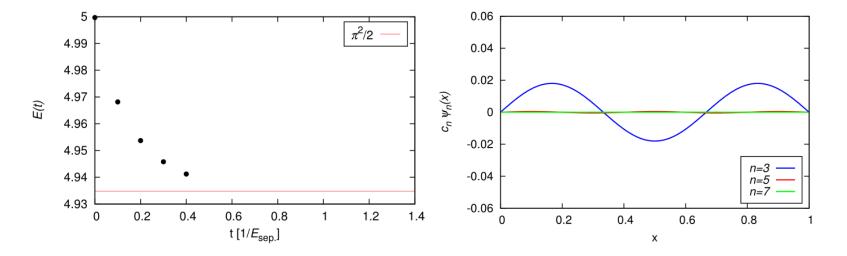
$$\psi_n(x) = \sqrt{2}\sin(n\pi x), \quad E_n = \frac{n^2\pi^2}{2}$$

► Make consecutive small timesteps,
$$\tau = 0.1 \left(\frac{1}{E_{sep}}\right)$$



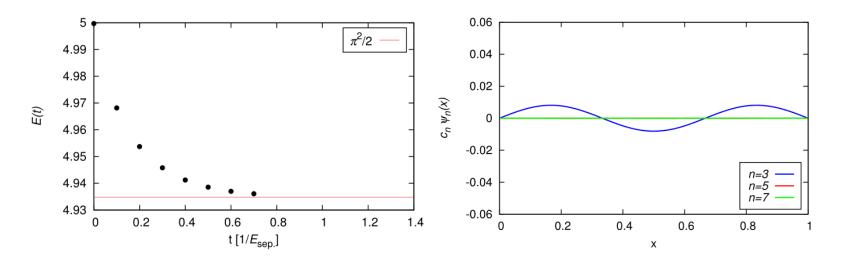
$$\psi_n(x) = \sqrt{2}\sin(n\pi x), \quad E_n = \frac{n^2\pi^2}{2}$$

► Make consecutive small timesteps,
$$\tau = 0.4 \left(\frac{1}{E_{sep}}\right)$$



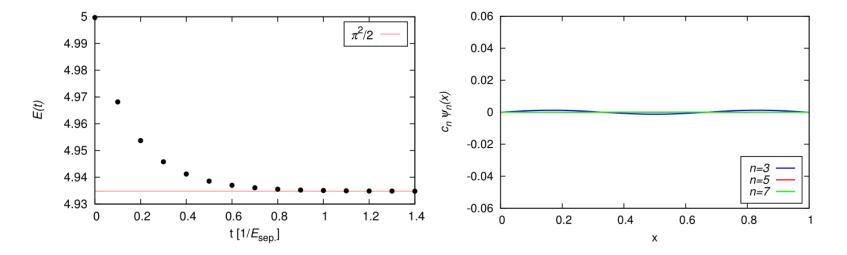
$$\psi_n(x) = \sqrt{2}\sin(n\pi x), \quad E_n = \frac{n^2\pi^2}{2}$$

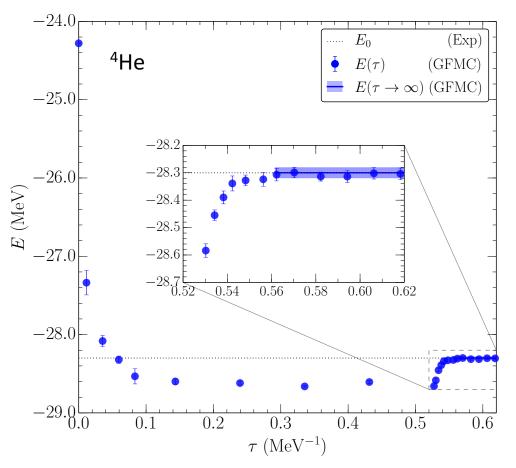
► Make consecutive small timesteps,
$$\tau = 0.7 \left(\frac{1}{E_{sep}}\right)$$



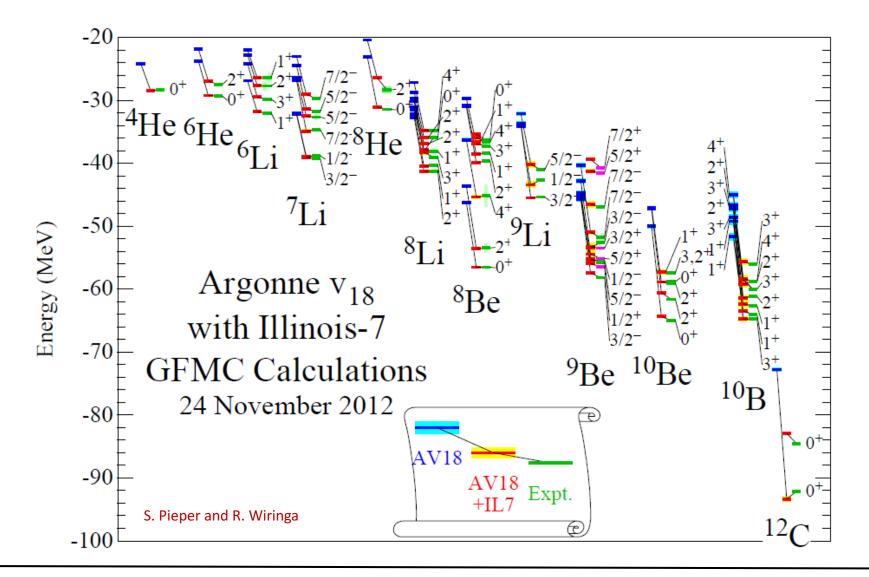
$$\psi_n(x) = \sqrt{2}\sin(n\pi x), \quad E_n = \frac{n^2\pi^2}{2}$$

► Make consecutive small timesteps,
$$\tau = 1.4 \left(\frac{1}{E_{sep}}\right)$$





Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, in preparation.



To evaluate the propagator for small timesteps $\Delta \tau$ we need local potentials: $\langle r' | \hat{V} | r \rangle = \begin{cases} V(r) \, \delta(r - r'), & \text{if local} \\ V(r', r), & \text{if nonlocal} \end{cases}$

Chiral Effective Field Theory interactions generally nonlocal:

- Momentum transfer $q \rightarrow p' p$
- > Momentum transfer in the exchange channel $k = \frac{1}{2}(p + p')$
- Fourier transformation: $q \rightarrow r, k \rightarrow$ Derivatives

Sources of nonlocalities:

Usual regulator in relative momenta

$$f(p) = e^{-(p/\Lambda)^{2n}}$$

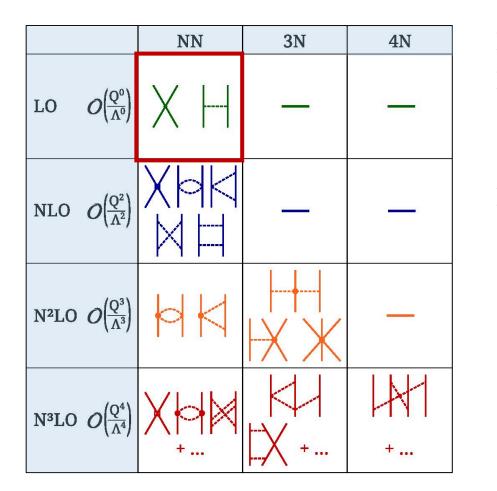
k-dependent contact operators

Solutions:

Choose local regulators:

$$V_{\text{long}}(r) \rightarrow V_{\text{long}}(r) \left(1 - e^{-(r/R_0)^4}\right)$$
$$\delta_{R_0}(\mathbf{r}) = \alpha e^{-(r/R_0)^4}$$

Use Fierz freedom to choose local set of contact operators



Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

- > Leading order $V^{(0)} = V_{cont}^{(0)} + V^{OPE}$
- ➢ Pion exchange local → local regulator

 $f_{\rm long}(r) = 1 - \exp(-r^4/R_0^4)$

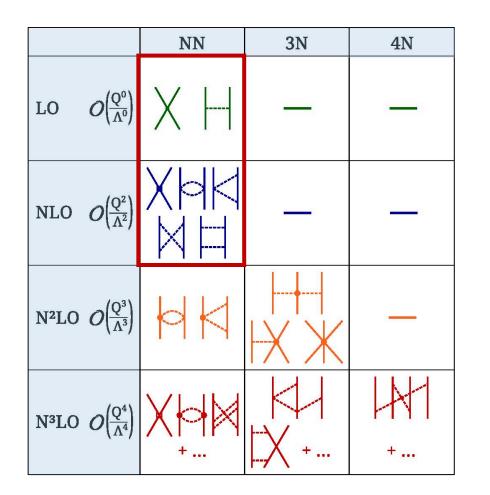
Contact potential:

$$V_{\text{cont}}^{(0)} = \alpha_1 \mathbf{1} + \alpha_2 \sigma_1 \cdot \sigma_2 + \alpha_3 \tau_1 \cdot \tau_2 + \alpha_4 \sigma_1 \cdot \sigma_2 \tau_1 \cdot \tau_2$$

\rightarrow Only two independent (Pauli principle)

$$V_{\rm cont}^{(0)} = C_S \mathbf{1} + C_T \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$$

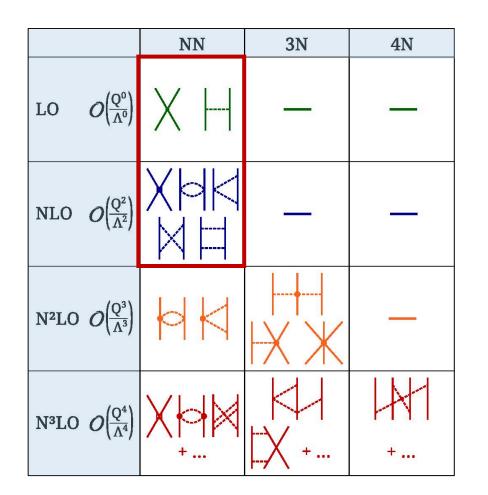
$$f_{\rm short}(r) = \alpha \exp(-r^4/R_0^4)$$



Choose local set of short-range operators at NLO (7 out of 14)

$$\begin{split} W_{\text{cont}}^{(2)} &= \gamma_1 \, q^2 + \gamma_2 \, q^2 \, \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \gamma_3 \, q^2 \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_4 \, q^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_5 \, k^2 + \gamma_6 \, k^2 \, \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \gamma_7 \, k^2 \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_8 \, k^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_9 \, (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) (\mathbf{q} \times \mathbf{k}) \\ &+ \gamma_{10} \, (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) (\mathbf{q} \times \mathbf{k}) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_{11} (\boldsymbol{\sigma}_1 \cdot \mathbf{q}) (\boldsymbol{\sigma}_2 \cdot \mathbf{q}) \\ &+ \gamma_{12} (\boldsymbol{\sigma}_1 \cdot \mathbf{q}) (\boldsymbol{\sigma}_2 \cdot \mathbf{q}) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_{13} (\boldsymbol{\sigma}_1 \cdot \mathbf{k}) (\boldsymbol{\sigma}_2 \cdot \mathbf{k}) \\ &+ \gamma_{14} (\boldsymbol{\sigma}_1 \cdot \mathbf{k}) (\boldsymbol{\sigma}_2 \cdot \mathbf{k}) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \,. \end{split}$$

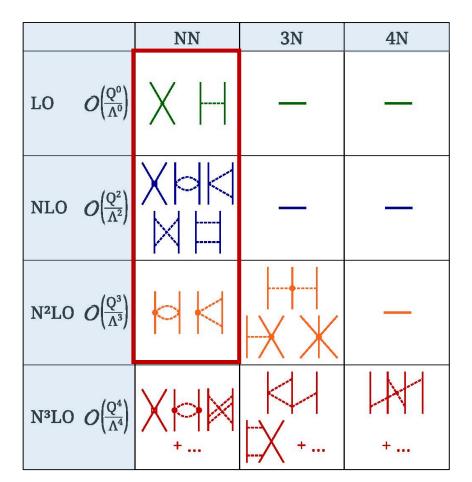
Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...



Choose local set of short-range operators at NLO (7 out of 14)

$$\begin{aligned} V_{\text{cont}}^{(2)} &= \gamma_1 q^2 + \gamma_2 q^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \gamma_3 q^2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_4 q^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_5 k^2 + \gamma_6 k^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + \gamma_7 k^2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_8 k^2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_9 (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) (\mathbf{q} \times \mathbf{k}) \\ &+ \gamma_{10} (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) (\mathbf{q} \times \mathbf{k}) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ &+ \gamma_{11} (\boldsymbol{\sigma}_1 \cdot \mathbf{q}) (\boldsymbol{\sigma}_2 \cdot \mathbf{q}) \\ &+ \gamma_{12} (\boldsymbol{\sigma}_1 \cdot \mathbf{q}) (\boldsymbol{\sigma}_2 \cdot \mathbf{q}) \\ &+ \gamma_{13} (\boldsymbol{\sigma}_1 \cdot \mathbf{k}) (\boldsymbol{\sigma}_2 \cdot \mathbf{k}) \\ &+ \gamma_{14} (\boldsymbol{\sigma}_1 \cdot \mathbf{k}) (\boldsymbol{\sigma}_2 \cdot \mathbf{k}) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \,. \end{aligned}$$

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...



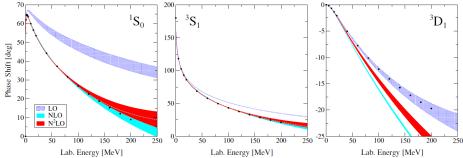
Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

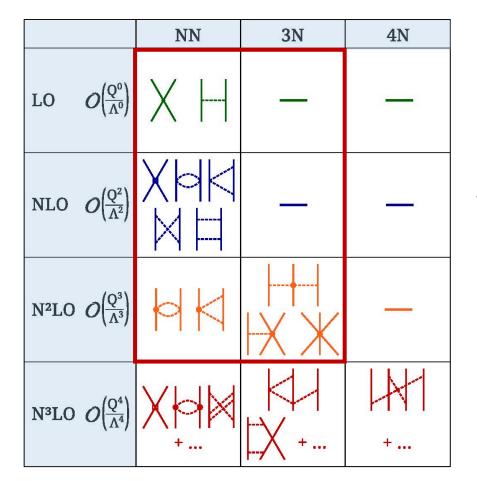
- Choose local set of short-range operators at NLO (7 out of 14)
- Pion exchanges up to N²LO are local
- This freedom can be used to remove all nonlocal operators up to N²LO

Gezerlis, IT, Epelbaum, Gandolfi, Hebeler, Nogga, Schwenk, PRL (2013)

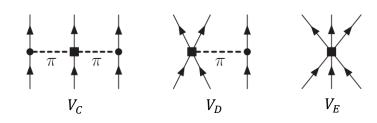
Gezerlis, IT, Epelbaum, Freunek, Gandolfi, Hebeler, Nogga, Schwenk, PRC (2014)

LECs fit to phase shifts





Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ... Inclusion of leading 3N forces:



Three topologies:

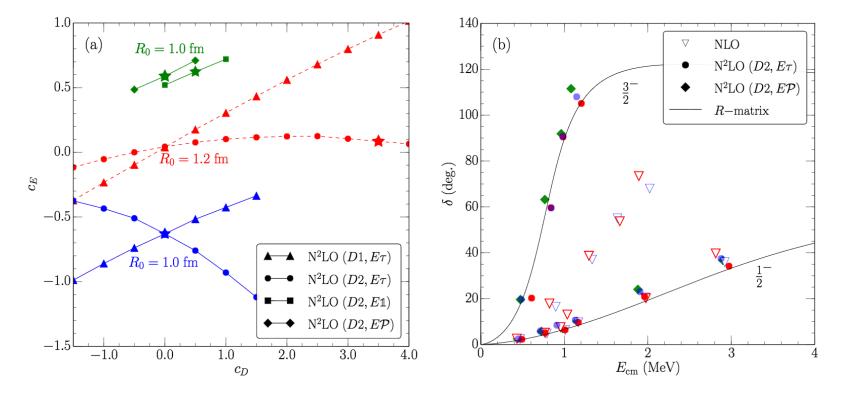
- \succ Two-pion exchange V_C
- \triangleright One-pion-exchange contact V_D
- \succ Three-nucleon contact V_E

Only two new couplings: c_D and c_E .

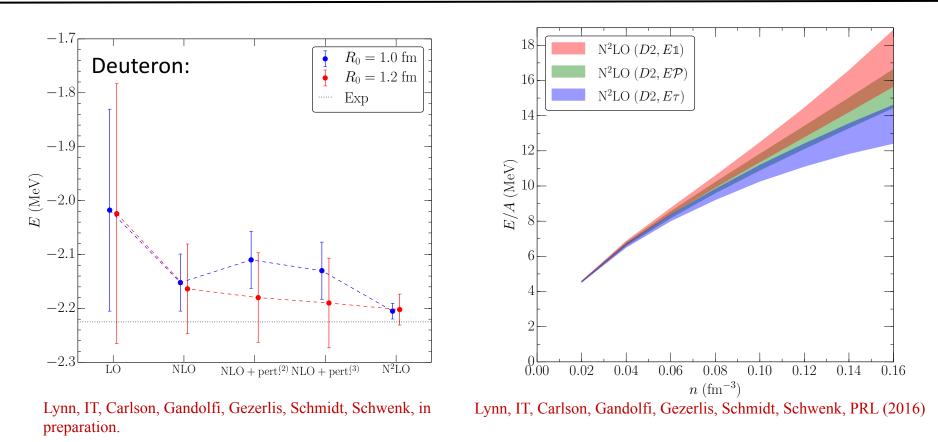
Fit to uncorrelated observables:

- Probe properties of light nuclei: ⁴He E_B
- > Probe T=3/2 physics: n- α scattering

 \succ Fit c_E and c_D to ⁴He binding energy and n- α scattering



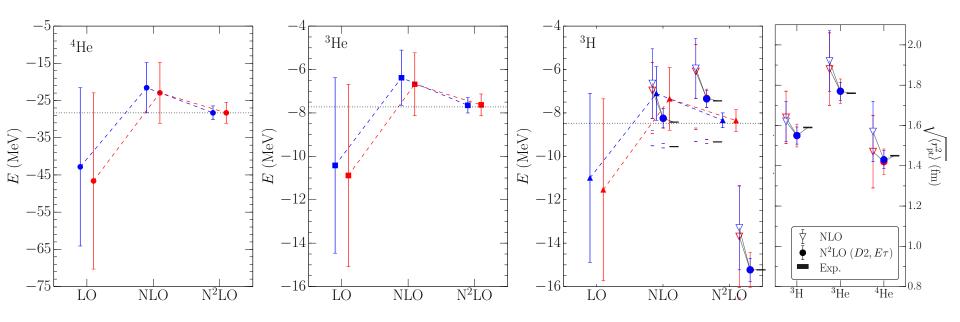
Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, PRL (2016)



Chiral interactions at N²LO simultaneously reproduce the properties of A≤5 systems and of neutron matter (uncertainty estimate as in E. Epelbaum et al, EPJ (2015))
Commonly used phenomenological 3N interactions fail for neutron matter

Sarsa, Fantoni, Schmidt, Pederiva, PRC (2003)

Results



Lynn, IT, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk, in preparation.

Chiral interactions at N²LO simultaneously reproduce the properties of A≤5 systems and of neutron matter (uncertainty estimate as in E. Epelbaum et al, EPJ (2015))
Commonly used phenomenological 3N interactions fail for neutron matter Sarsa, Fantoni, Schmidt, Pederiva, PRC (2003)

Now: two neutrons in a box

Klos, Lynn, IT, Gandolfi, Gezerlis, Hammer, Hoferichter, Schwenk, PRC (2016)

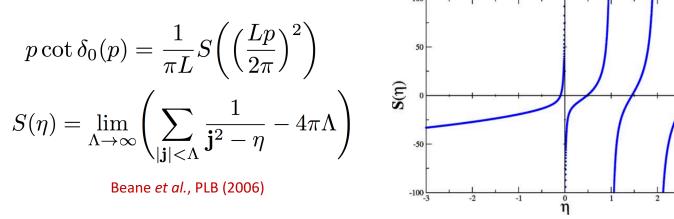
Why study two neutrons in a box with QMC:

- Pure neutron systems difficult to study experimentally (e.g., nn scattering length)
- Proof of principle calculation because comparison with Luescher formula possible
- > AFDMC naturally suited to calculations with periodic boundary conditions
- AFDMC naturally extendable to more particles (3n, 4n) where no Luescher formula available

Consider nn S-wave scattering in a cubic box with length L:

Lüscher formula connects energy of two particles in finite volume with phase shift in the infinite volume

Lüscher, Commun. Math. Phys. (1986)



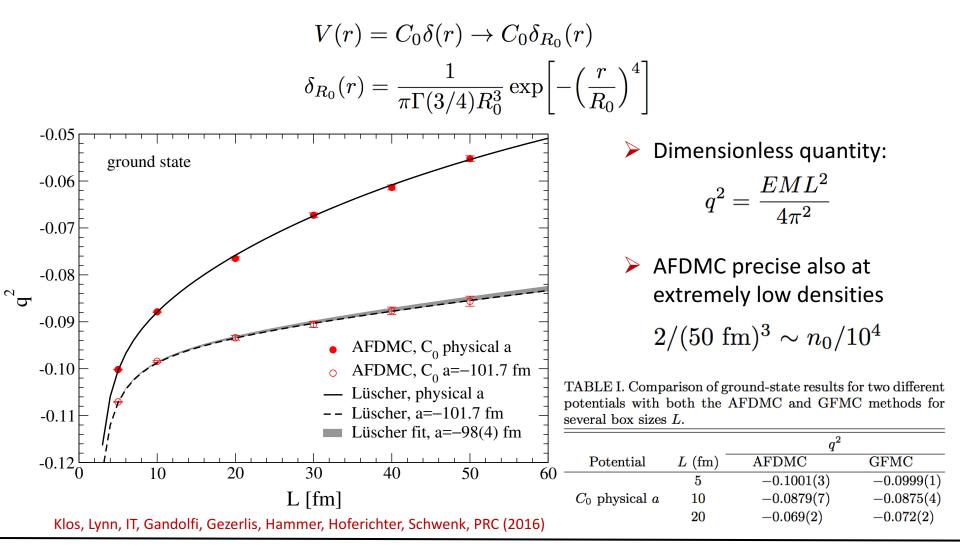
Low-energy S-wave scattering: use the effective-range expansion:

$$p\cot\delta_0(p) = -rac{1}{a} + rac{1}{2}r_\mathrm{e}p^2 + \mathcal{O}(p^4)$$

Properties in infinite volume (scattering length, eff. range) can be determined from finite volume computations

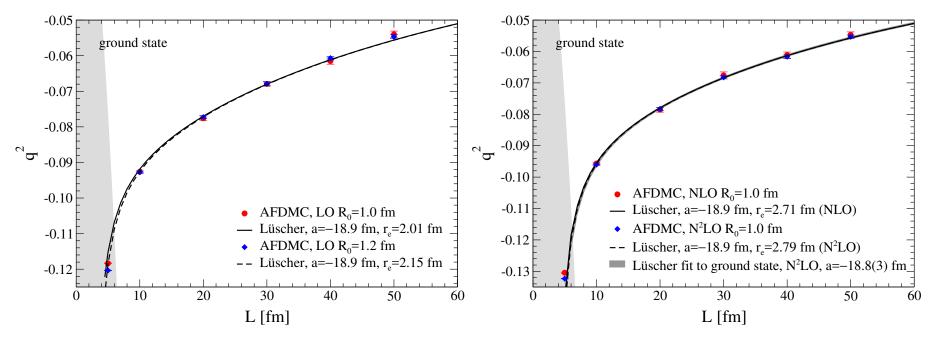
Ground-state energies

First consider simple smeared-out contact interaction:



Now consider chiral EFT interactions:

- > Analytic continuation of the Luescher formula (ERE) Not expected to work when pion exchanges become important, so when $p > m_{\pi}/2$
- \blacktriangleright Corrections go as $\exp(-m_{\pi}L)$, so formula valid as long as $m_{\pi}L$ large



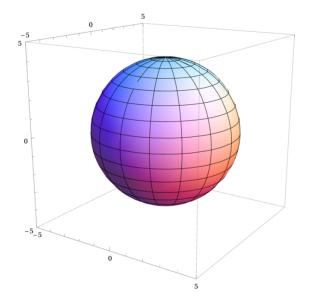
Klos, Lynn, IT, Gandolfi, Gezerlis, Hammer, Hoferichter, Schwenk, PRC (2016)

Excited-state information desired, but challenging to obtain:

- Excited states have nodal surface in wave function.
- > AFDMC uses fixed-node approximation:

Nodal surface needed as input in trial wave function.

Insert spherical nodal surface in trial wave function (in Jastrow $f^{c}(r_{12})$):



$$\begin{aligned} |\psi_J\rangle &= \left[\prod_{i < j} f^c(r_{ij})\right] |\Phi\rangle \\ \langle \mathbf{R}S |\Phi\rangle &= \mathcal{A}[\langle \mathbf{r}_1 s_1 |\phi_1\rangle \cdots \langle \mathbf{r}_2 s_2 |\phi_2\rangle \cdots \langle \mathbf{r}_A s_A |\phi_A\rangle] \\ \phi_\alpha(\mathbf{r}_i, s_i) &= e^{i\mathbf{k}_\alpha \cdot \mathbf{r}_i} \chi_{s,m_s}(s_i) \quad \mathbf{k}_\alpha = \frac{2\pi}{L} \mathbf{n}_\alpha \end{aligned}$$

First AFDMC calculations of excited states!

Excited states

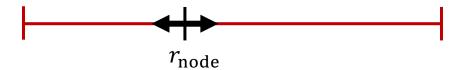
8 7 Jastrow functions: Ground state: 6 $|\psi_J\rangle = \left[\prod_{i < i} f^c(r_{ij})\right] |\Phi\rangle$ 5 $f_{J}(r_{12})$ $\langle \mathbf{R}S | \Phi \rangle = \mathcal{A}[\langle \mathbf{r}_1 s_1 | \phi_1 \rangle \cdots \langle \mathbf{r}_2 s_2 | \phi_2 \rangle \cdots \langle \mathbf{r}_A s_A | \phi_A \rangle]$ — jastrow GS 3 $\phi_{\alpha}(\mathbf{r}_i, s_i) = e^{i\mathbf{k}_{\alpha}\cdot\mathbf{r}_i}\chi_{s,m_s}(s_i) \quad \mathbf{k}_{\alpha} = \frac{2\pi}{L}\mathbf{n}_{\alpha}$ 0[∟]0 2 3 5 9 10 4 6 7 8 r₁₂ [fm] 5 0 -5 5 Excited state: 0 $f_{J}(r_{12})$ 0 -8 jastrow EX -10 -12 -5-5 -14 -16 2 5 7 9 0 1 3 4 6 8 10 r₁₂ [fm]

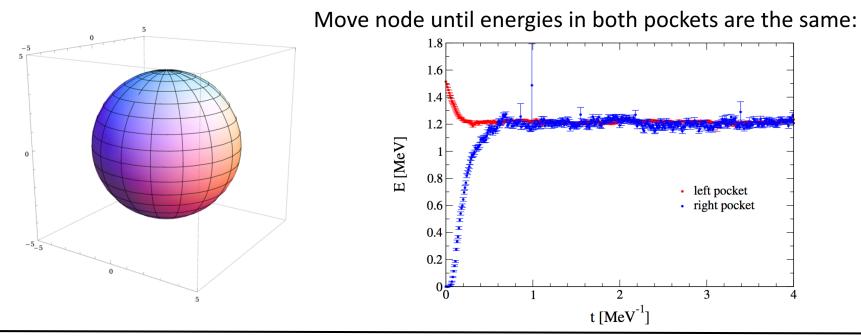
INSTITUTE for NUCLEAR THEORY

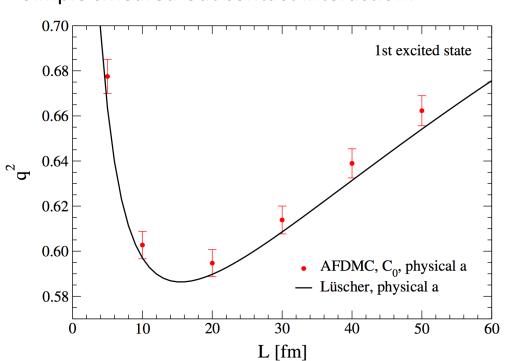
Determine nodal position: for local potential Schroedinger equation

$$H\psi(\mathbf{r}_1,\mathbf{r}_2) = E\psi(\mathbf{r}_1,\mathbf{r}_2)$$

gives same energy independent of coordinates.

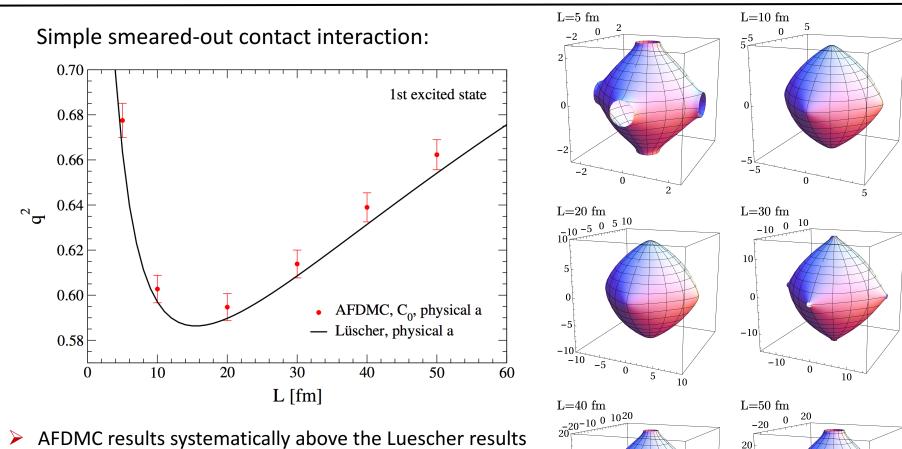






Simple smeared-out contact interaction:

- AFDMC results systematically above the Luescher results
- Overall trend is correctly reproduced
- Nodal surface not spherical:
 - investigate exact nodal surface $r(\theta, \phi)$ using diagonalization



- Overall trend is correctly reproduced
- Nodal surface not spherical:
 - investigate exact nodal surface $r(\theta, \phi)$ using diagonalization

10

0

-10

-20

0

10

20

20

0

0

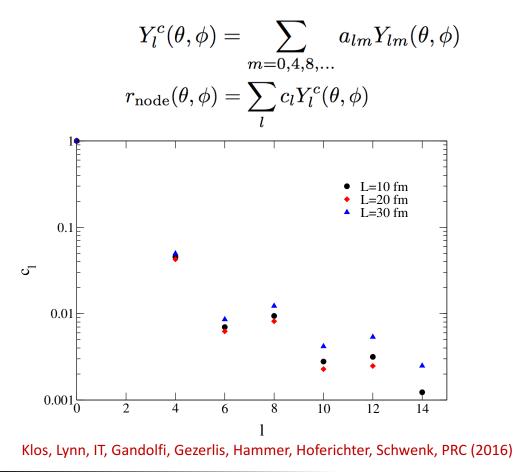
-20

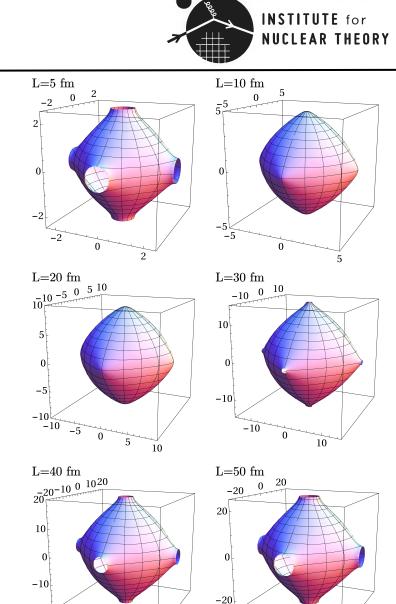
-20

Excited states

Nodal surfaces can be decomposed into cubic harmonics:

Muggli, Z. Angew. Math. Mech. (1972)





-20 -20

-10 0

10

20

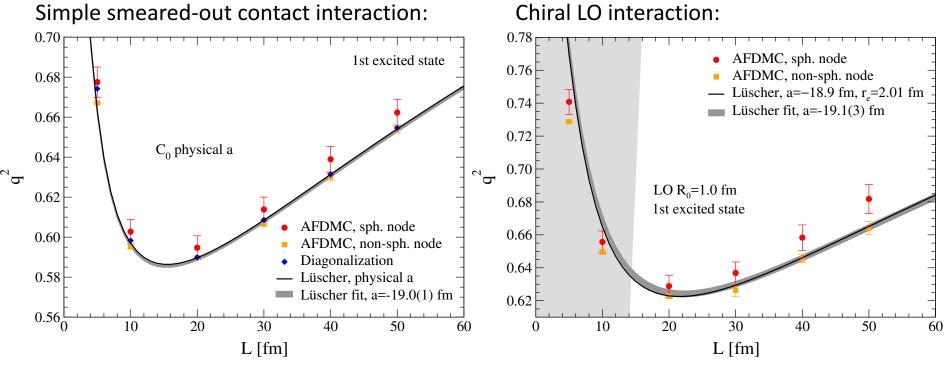
20

0

-20

INSTITUTE for NUCLEAR THEORY

We include first correction to spherical node:



Klos, Lynn, IT, Gandolfi, Gezerlis, Hammer, Hoferichter, Schwenk, PRC (2016)

Very good agreement with Luescher results!

Next step: Extend to larger systems!

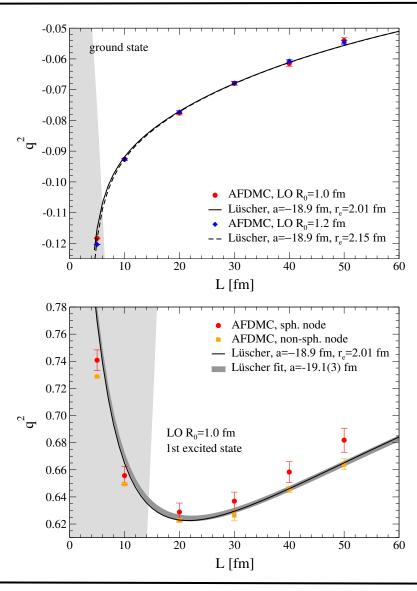
Summary

Quantum Monte Carlo calculations with chiral EFT interactions lead to interesting results:

Chiral interactions at N²LO simultaneously reproduce the properties of A=3, 4, 5 systems and of neutron matter.

First calculations of excited states in AFDMC.

- QMC calculations provide a reliable tool to establish a bridge between lattice QCD calculations and chiral EFT.
- Possible to extend calculations to larger or different systems where no Luescher formula available.
- Finite volume calculations will eventually allow for matching LECs to Lattice QCD.



Thanks

INSTITUTE for NUCLEAR THEORY

Thanks to my collaborators:

Technische Universität Darmstadt: H.-W. Hammer, P. Klos, J. Lynn, A. Schwenk

Los Alamos National Laboratory:
J. Carlson, S. Gandolfi

University of Guelph:A. Gezerlis

Institute for Nuclear Theory:
M. Hoferichter

Thanks to FZ Jülich for computing time and NIC excellence project.

European Research Council Established by the European Commission

