Recent Advances in SCGF Calculations

Carlo Barbieri - University of Surrey
2 March 2017

- Some details of the current SCGF formalism (extensions for 3NFs)
- Application of saturating interactions and new local-nonlocal force
- Bubble structure of ${ }^{34}$ Si
- occupation of valence shells
- Nuclei from Lattice QCD (at $m_{\pi}=0.47 \mathrm{GeV} / \mathrm{c}^{2}$...)

Related calculations (see following talks):

- Shell model effective charges
- Dipole response
- Ab-Initio optical potential from SCGF

Current Status of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors
Self-organization and emerging phenomena

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength-on both sides of the Fermi surface...

```
CB et al.,
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313 (2009)
```

- A complete expansion requires all types of particle-vibration coupling ...these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Self-Consistent Green's Function Approach

- Global picture of nuclear dynamics
- Reciprocal correlations among effective modes
- Guaranties macroscopic conservation laws

Self-Consistent Green's Function Approach

Gorkov and
 3-nucleon forces

Truncation scheme:	Dyson formulation (closed shells)	Gorkov formulation (semi-/doubly-magic)
$1^{\text {st }}$ order:	Hartree-Fock	HF-Bogolioubov
$2^{\text {nd }}$ order:	$2^{\text {nd }}$ order	$2^{\text {nd }} \operatorname{order}(w /$ pairing $)$
$3^{\text {rd }}$ and all-orders sums, P-V coupling:	ADC(3) FRPA etc...	$G-A D C(3)$...work in progress

Approaches in GF theory

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

(b)
\rightarrow Use of irreducible 2-body interactions
\rightarrow Need to correct the Koltun sum rule (for energy)
$\rightarrow 3 p 2 h / 3 h 2 p$ terms relevant to next-generation high-precision methods.
(o)

(f)

(j)

(k)

(1)

(m)

(n)

(p)

(q)

Inclusion of NNN forces

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

(a)

(b)
\rightarrow Use of irreducible 2-body interactions
\rightarrow Need to correct the Koltun sum rule (for energy)
$\rightarrow 3 p 2 h / 3 h 2 p$ terms relevant to next-generation high-precision methods.

(b)

(d)

(e)

(i)

(f)

(j)

(k)

(1)

(m)

(n)

(o)

(p)

(q)

Inclusion of NNN forces

First interactions irreducible

3NF term:

F. Raimondi, CB, arXiv:1701.08127v1 [nucl-th] and PhysRevC in preparation (2017).

| Including 3 N |
| :--- | :--- |
| forces in the many-body diagrammatic with the ADC formalism $\quad 13$ |

while the one connecting through a hole-particle (hp) interaction gives
$\mathbf{D}_{(k, k}^{h p}$ \qquad $\frac{1}{2}\left(\left(\mathcal{Y}_{\mu}^{k_{2}} \mathcal{X}_{\rho}^{n_{3}}\right)^{*} \widetilde{V}_{\mu \nu, \lambda \rho} \mathcal{Y}_{\lambda}^{k_{5}} \mathcal{X}_{\nu}^{n_{6}} \delta_{k_{1} k_{4}}\right.$ $-\left(\mathcal{X}_{\mu}^{k_{2}} \mathcal{X}_{\rho}^{n_{3}}\right)^{*} \widetilde{V}_{\mu \nu, \lambda \rho} \mathcal{Y}_{\lambda}^{k_{4}} \mathcal{X}_{\nu}^{n_{6}} \delta_{k_{1} k_{5}}$ $-\left(\mathcal{Y}_{\mu}^{k_{1}} \mathcal{X}_{\rho}^{n_{3}}\right)^{*} \tilde{V}_{\mu \nu, \lambda \rho} \mathcal{Y}_{\lambda}^{k_{5}} \mathcal{X}_{\nu}^{n_{6}} \delta_{k_{2} k_{4}}$ $\left.+\left(\mathcal{Y}_{\mu}^{k_{1}} \mathcal{X}_{\rho}^{n_{3}}\right)^{*} \widetilde{V}_{\mu \nu, \lambda \rho} \mathcal{Y}_{\lambda}^{k_{4}} \mathcal{X}_{\nu}^{n_{6}} \delta_{k_{2} k_{5}}\right)$
We now turn to the Feynman diagram of Fig. 3c, which is the focus work. To our knowledge the ADC formulas arising from this term presented before. The Feynman rules give the following expression for $\Sigma_{\alpha \beta}^{(3 c)}(\omega)=-\frac{(\hbar)^{4}}{4} \int \frac{\mathrm{~d} \omega_{1}}{2 \pi \mathrm{i}} \int \frac{\mathrm{d} \omega_{2}}{2 \pi \mathrm{i}} \int \frac{\mathrm{d} \omega_{3}}{2 \pi \mathrm{i}} \int \frac{\mathrm{d} \omega_{4}}{2 \pi \mathrm{i}} \sum_{\substack{\delta \nu \nu \epsilon \lambda \\ \xi_{\eta} \neq \sigma \tau \chi}} \widetilde{V}_{\alpha \gamma, \delta \nu} g_{\xi \gamma}\left(\omega_{3}\right) g_{\nu \lambda}$

$$
g_{\delta \epsilon}\left(\omega_{1}\right) W_{\mu \epsilon \lambda, \xi \eta \theta} g_{\theta \tau}\left(\omega-\omega_{2}+\omega_{4}\right) g_{\eta \sigma}\left(\omega_{2}\right) g_{\chi \mu}\left(\omega_{4}\right) \widetilde{V}_{\sigma \tau,}
$$

By performing the four integrals in the complex plane, we find six term By performing the four integrals in the complex plane, we find six term
ing to the different time orderings of the three interactions. Altogethe $\Sigma_{\alpha \beta}^{(3 c)}(\omega)=\frac{1}{4} \sum_{\gamma \delta \nu \epsilon \lambda} \widetilde{V}_{\alpha \gamma, \delta \nu} W_{\epsilon \lambda \mu, \eta \xi \xi} \widetilde{V}_{\sigma \tau, \beta \chi} \times$

 $+\sum_{k_{1} k_{2} n_{3}} \frac{\left.\left.\left(\mathcal{X}_{\delta}^{n_{4}} \mathcal{X}_{\nu}^{n_{5}} \mathcal{Y}_{\gamma}^{k_{6}}\right)^{*} \mathcal{X}_{\epsilon}^{n_{4}} \mathcal{X}_{\lambda}^{n_{5}} \mathcal{X}_{\mu}^{n_{3}} \mathcal{Y}_{\eta}^{k_{1}} \mathcal{Y}_{\theta}^{k_{2}} \mathcal{Y}_{\varepsilon}^{k_{6}} \mathcal{Y}_{\sigma}^{+}+\mathcal{Y}_{n_{5}}^{+k_{1}} \mathcal{E}_{k_{6}}^{-}\right)+\mathrm{i} \eta\right)\left(\varepsilon_{k_{1}}^{-}+\varepsilon_{k_{2}}^{-}+\varepsilon_{k_{6}}^{-}-\varepsilon_{n_{3}}^{+}\right.}{\text {. }}$

where the first (last) three terms correspond to forward-in-time (ba Goldstone diagrams.

(a)
(b)

Figure 5: Diagrams of the $\operatorname{ADC}(3)$ coupling matrices with one effective 2NF \tilde{V} and one interaction-irreducible $3 \mathrm{NF} \hat{W}$. The coupling matrix (a) is linked to $2 p 1 h$ ISCs
and corresponds to Eq. (45), while (b) is linked to $2 h 1 p$ ISCs and corresponds to Eq. (46)

By comparing to the third order terms in Eq. (24), one see that the new con tributions to the coupling matrices contain one effective 2 NF and one interaction the second or third line of Eq. (44),

while in the last two lines of Eq. (44) we read the backward-in-time coupling matrix:

The diagrammatic representations of Eqs. (45) and (46) are displayed in Fig. 5. The only interaction matrix that connects $2 p 1 h$ ISCs through a 3 NF is found from the first term of Eq. (44),
$\mathrm{C}_{\left(n_{1} n_{2} k_{3}\right),\left(n_{4} n_{5} k_{6}\right)}^{3 N} \equiv-\frac{1}{2} \mathcal{X}_{\nu}^{n_{1}} \mathcal{X}_{\mu}^{n_{2}} \mathcal{Y}_{\rho}^{k_{3}} W_{\nu \mu \lambda, \epsilon \eta \rho}\left(\mathcal{X}_{\epsilon}^{n_{4}} \mathcal{X}_{\eta}^{n_{5}} \mathcal{Y}_{\lambda}^{k_{\epsilon}}\right)^{*}$,
which is explicitly antisymmetric in the particle indexes. With Eqs. (47) and (27) we can rewrite the first term of Eq. (44) as,

$$
\begin{equation*}
\mathbf{M}_{\alpha r}^{\dagger(1-2 N)} \frac{1}{\hbar \omega-E_{r}} \mathbf{C}_{r r^{\prime}}^{3 N} \frac{1}{\hbar \omega-E_{r^{\prime}}} \mathbf{M}_{r^{\prime} \beta}^{(1-2 \mathrm{~N})} . \tag{48}
\end{equation*}
$$

The expression (48) contains only the first order contribution in the interaction matrix expansion, corresponding to the second term in the r.h.s. of Eq. (23), for $B=\mathbf{C}^{3 N}$ This is resummed to all order by diagonalizing the Dyson matrix (19), which wil automatically include all the higher order terms in the expansion.
From the fourth term of Eq. (44), we single out the only bas teraction matrix connecting two $2 h 1 p$ configurations through a 3 N interaction, that
is

$$
\begin{equation*}
\mathbf{D}_{\left(k_{1} k_{2} n_{3}\right),\left(k_{4} k_{5} n_{6}\right)}^{3 N} \equiv-\frac{1}{2}\left(\mathcal{y}_{\nu}^{k_{1}} \mathcal{L}_{\mu}^{k_{2}} \mathcal{X}_{\rho}^{n_{3}}\right)^{*} W_{\nu \mu \lambda, \epsilon \ell \rho} y_{c}^{k_{4}} \mathcal{V}_{\eta}^{k_{5}} \mathcal{X}_{\lambda}^{n_{6}}, \tag{49}
\end{equation*}
$$

which is also explicitly antisymmetric in the hole indexes. With Eqs. (49) and (28) we associate the fourth term of Eq. (44) to

$$
\mathbf{N}_{\alpha s}^{(1-2 N)} \frac{1}{\hbar \omega-E_{s}} \mathbf{D}_{s s^{\prime}}^{3 N} \frac{1}{\hbar \omega-E_{s^{\prime}}} \mathbf{N}_{s^{\prime} \beta}^{\dagger(1-2 N)}
$$

Ab-initio Nuclear Computation \& BcDor code

BoccaDorata code:
(C. Barbieri 2006-16
V. Somà 2010-15
A. Cipollone 2011-14)

- Provides a C++ class library for handling many-body propagators ($\approx 40,000$ lines, MPI\&OpenMP based).
- Allows to solve for nuclear spectral functions, many-body propagators, RPA responses, coupled cluster equations and effective interaction/charges for the shell model.

Code history:

Ab-initio Nuclear Computation \& BcDor code

http://personal.ph.surrey.ac.uk/~cb0023/bcdor/

Computational Many-Body Physics

Download

Documentation

Welcome

From here you can download a public version of my self-consistent Green's function (SCGF) code for nuclear physics. This is a code in J-coupled scheme that allows the calculation of the single particle propagators (a.k.a. one-body Green's functions) and other many-body properties of spherical nuclei.
This version allows to:

- Perform Hartree-Fock calculations.
- Calculate the the correlation energy at second order in perturbation theory (MBPT2).
- Solve the Dyson equation for propagators (self consistently) up to second order in the self-energy.
- Solve coupled cluster CCD (doubles only!) equations.

When using this code you are kindly invited to follow the creative commons license agreement, as detailed at the weblinks below. In particular, we kindly ask you to refer to the publications that led the development of this software.

Relevant references (which can also help in using this code) are:
Prog. Part. Nucl. Phys. 52, p. 377 (2004),
Phys. Rev. A76, 052503 (2007),
Phys. Rev. C79, 064313 (2009),
Phys Rev C.8.9 n24.323 (2014)

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and Phys. Rev. C 92, 014306 (2015)

\rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

Neighbouring Ar, K, Ca, Sc, and Ti chains

V. Somà, CB et al. Phys. Rev. C89, 061301R (2014)

Two-neutron separation energies predicted by chiral $\mathrm{NN}_{[E M(500)]+3 N F[N 2 L O(400)]:}$

\rightarrow First ab-initio calculation over a contiguous portion of the nuclear chart-open shells are now possible through the Gorkov-GF formalism

Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces
V. Lapoux, ${ }^{1, *}$, V. Somà, ${ }^{1}$ C. Barbieri, ${ }^{2}$ H. Hergert, ${ }^{3}$ J. D. Holt, ${ }^{4}$ and S. R. Stroberg ${ }^{4}$

- New fits of chiral interactions (NNLOsat) highly improve comparison to data
- Deficiencies remain for neutron rich isotopes

FIG. 1. Oxygen binding energies. Results from SCGF and IMSRG calculations performed with EM [20-22] and $\mathrm{NNLO}_{\text {sat }}$ [26] interactions are displayed along with available experimental data.

charge radif in the pif shell

Size of radii not prefect but remains overall correct throughout the pf shell with NNLO-sat.

This suggests that saturation is indeed under control.
\rightarrow Improvements of many-body truncations beyond $2^{\text {nd }}$ order Gorkov will also be relevant. (work in progress!)

Bubble nuclei...
 34 Si prediction

Duguet, Somà, CB, et al. arXiv:1611.08570 [nucl-th]

- ${ }^{34} \mathrm{Si}$ is unstable, charge distribution still unknown
- Suggested central depletion from mean-field simulations
- Ab-initio theory confirms predictions

Validated by charge distributions and neutron quasiparticle spectra:

UNURERTYOF

Proton spectral strength in Oxygen

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and Phys. Rev. C 92, 014306 (2015) and in preparation

More in detail:

UNIVERSITY OF
SURREY

Quenching of absolute spectroscopic factors

[CB, Phys. Rev. Lett. 103, 202520 (2009)]

Overall quenching of spectroscopic factors is driven by:
SRC $\quad \rightarrow$ ~10\% part-vibr. coupling \rightarrow dominant "shell-model" \rightarrow in open shell
... with analogous conclusions for ${ }^{48} \mathrm{Ca}$

 2
1.5
1
0.5

ZNN asymmetry dependence of SF's - Theory

Ab -initio calculations explain (a very weak) the Z / N dependence but the effect is much lower than suggested by direct knockout

Rather the quenching is high correlated to the gap at the Femi surface.

A. Cipollone, CB, P Navrátil

Phys. Rev. C92, 014306 (2015)

Spectroscopic factor are strongly correlated to p-h gaps:

CB, M. Hjorth-Jensen,
Phys. Rev. C 79, 064313 (2009)

ZNN asymmetry dependence of SF's - Theory

$A b-$ initio calculations explain (a very weak) the Z / N dependence but the effect is much lower than suggested by direct knockout

Rather the quenching is high correlated to the gap at the Femi surface.

A. Cipollone, CB, P Navrátil

Phys. Rev. C92, 014306 (2015)

Spectroscopic factor are strongly correlated to p-h gaps:

CB, M. Hjorth-Jensen,
Phys. Rev. C 79, 064313 (2009)

Local vs. non-local chiral N²LO NNN interaction - by P. Navrátil

- Local: chiral N3LO NN+ N²LO 3N500
- $\mathrm{C}_{\mathrm{D}}=-0.2 \quad \mathrm{C}_{\mathrm{E}}=-0.205\left({ }^{3} \mathrm{H} \mathrm{E} \mathrm{Egs}=-8.48 \mathrm{MeV}\right)$
- ${ }^{4} \mathrm{He}$

$$
\text { <H>=-28.4939 <V3b_2pi>=-5.8819 <V3b_D>=-0.2206 <V3b_E>= } 1.2665
$$

- Non-local: chiral $\mathrm{N}^{2} \mathrm{LO}_{\text {sat }} \mathrm{NN}+3 \mathrm{~N}$
- $\mathrm{c}_{\mathrm{D}}=+0.8168 \quad \mathrm{C}_{\mathrm{E}}=-0.0396\left({ }^{3} \mathrm{H} \mathrm{E} \mathrm{gss}=-8.53 \mathrm{MeV}\right)$
- ${ }^{4} \mathrm{He}$

$$
\text { <H>=-28.4596 <V3b_2pi>=-4.7260 <V3b_D>= } 1.3897 \text { <V3b_E>= } 0.4174
$$

- Local/Non-local: chiral N32 LO NN+ N2LO

$$
F\left(\frac{1}{2}\left(\pi_{1}^{2}+\pi_{2}^{2}\right) ; \Lambda_{\text {nonloc }}\right) W_{1}^{Q}\left(\Lambda_{\text {loc }}\right) F\left(\frac{1}{2}\left(\pi_{1}^{2}+\pi_{2}^{2}\right) ; \Lambda_{\text {nonloc }}\right)
$$

Use completeness in HO basis to calculate products of FW F

- $c_{D}=+0.7$
$\mathrm{C}_{\mathrm{E}}=-0.06\left({ }^{3} \mathrm{H} \mathrm{E}_{\mathrm{gs}}=-8.44 \mathrm{MeV}\right)$
- ${ }^{4} \mathrm{He}$

$$
\text { <H>=-28.2530 <V3b_2pi>=-4.8124 <V3b_D>= } 0.7414 \text { <V3b_E>= } 0.4255
$$

$N 3 L O(500)+n / n 3 N F$

SCGF - Gorkov-ADC(2)

PRELIMINARY

Study of nuclear interactions from Lattice QCD

In collaboration with:

Approaches to nuclei from LQCD

$$
L=-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu v}+\bar{q} \gamma^{\mu}\left(i \partial_{\mu}-g t^{a} A_{\mu}^{a}\right) q-m \bar{q} q
$$

Why nuclear interactions on the Lattice??

- Extend LQCD beyond few-bodies
- Not based on a specific EFT momentum scale \rightarrow exploitable to high densities (e.g. Neutron stars)
- No LECs to worry about ...but:
- Variation in potentials from variation in sink operators (\rightarrow estimation of theoretical uncertainties)
- Direct derivation of hyperon-nucleon interactions
- 3NF can be derived consistently with NN interactions

Two-Nucleon HAL potentials

SÜRREY

Quark mass dependence of $V(r)$ for NN partial wave ($\left.{ }^{1} S_{0},{ }^{3} S_{1},{ }^{3} S_{1}{ }^{-3} D_{1}\right)$
\rightarrow Potentials become stronger m_{π} as decreases.

T. Inoue et al.,

Phys. Rev. Lett. 111112503 (2013).

Analysis of Brueckner HF

Scattering of two nucleons outside the Fermi sea (\Rightarrow BHF):

Mixed SCEF-Brueckner approach

Solve full many-body dynamics in model space ($P+Q^{\prime}$) and the Goldstone's ladders outside it (i.e. in $Q^{\prime \prime}$ only):

Treating short-range corr. with a G-matrix

- The short-range core can be treated by summing ladders outside the model space:

- $\Sigma_{\alpha \beta}^{\mathrm{MF}}(\omega)$ is due to scattering to (high-k) states in the Q space
- $\Sigma\left(\mathbf{r}, \mathbf{r}^{\prime} ; \omega\right)$ accounts for low-energy (long range) correlations

(Galitskii-Migalal-Boffi-) Koltun sumrule

类 Koltun sum rule (with NNN interactions):

$$
\sum_{\alpha} \frac{1}{\pi} \int_{-\infty}^{\epsilon_{F}^{-}} d \omega \omega \operatorname{Im} G_{\alpha \alpha}(\omega)=\left\langle\Psi_{0}^{N}\right| \hat{T}\left|\Psi_{0}^{N}\right\rangle+2\left\langle\Psi_{0}^{N}\right| \hat{V}\left|\Psi_{0}^{N}\right\rangle+3\left\langle\Psi_{0}^{N}\right| \hat{W}\left|\Psi_{0}^{N}\right\rangle
$$

$$
E_{0}^{N}=\frac{1}{2 \pi} \int_{-\infty}^{\epsilon_{F}^{-}} \mathrm{d} \omega \sum_{\alpha \beta}\left(T_{\alpha \beta}+\omega \delta_{\alpha \beta}\right) \operatorname{Im} G_{\beta \alpha}(\omega)-\frac{1}{2}\left\langle\Psi_{0}^{N}\right| \widehat{W}\left|\Psi_{0}^{N}\right\rangle
$$

High-k and missing energy tail from SRC... (currently neglected in calculating Koltun SR)

Benchmark on 4 He

C. Mcllroy, CB, et al., arXiv:1701.02607 [nucl-th]

Can benchmark the Gmtx+ADC(3) method on light ${ }^{4} \mathrm{He}$, where exact solutions are possible:

	$\mathrm{G}(\omega)+$ $\mathrm{ADC}(3)$	Exact
HALQCD @	$4.79(3)$	$5.09 \mathrm{MeV}^{1}$
$\mathrm{~m}_{\pi} \approx 470 \mathrm{MeV}$	MeV	
${ }^{1} \mathrm{H}$. Nemura et al., Int. J. Mod. Phys. E 23, 1461006 (2014)		

Can expect accuracy on binding energies at about 10\%

$$
G^{\prime \prime}(\omega)=V+\int d k_{a} d k_{b} V \frac{\hat{Q}^{\prime \prime}}{\omega-\varepsilon\left(k_{a}\right)-\varepsilon\left(k_{b}\right)+i \eta} G^{\prime \prime}(\omega)
$$

Binding of ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$:

C. Mcllroy, CB, et al., arXiv:1701.02607 [nucl-th]

Binding energies are $\sim 17 \mathrm{MeV}^{16} \mathrm{O}$ and $70-75 \mathrm{MeV}$ for ${ }^{40} \mathrm{Ca}$. Possibly being underestimated by 10%
$\rightarrow{ }^{16} \mathrm{O}$ at $\mathrm{m}_{\pi} \approx 470 \mathrm{MeV}$ is unstable toward 4- α breakup!
[C.S.Mcllroy, CB, HAL coll., in prep]

$E_{0}^{A}[\mathrm{MeV}]$	${ }^{4} \mathrm{He}$	${ }^{16} \mathrm{O}$	${ }^{40} \mathrm{Ca}$
BHF $[22]$	-8.1	-34.7	-112.7
$\mathrm{G}(\omega)+$ ADC (3)	$-4.80(0.03)$	$-17.9(0.3)(1.8)$	$-75.4(6.7)(7.5)$
Exact Result $[51]$	-5.09	-	-
Separation into ${ }^{4} \mathrm{He}$ clusters:	$-2.46(0.3)(1.8)$	$24.5(6.7)(7.5)$	

Infrared convengence

Moore et al., Phy. Rev. C87, 044326 (2013)

EM(500) - N3LO two-nucleon force

Infrared convergeren

Moore et al., Phy. Rev. C87, 044326 (2013)

EM(500) - N3LO two-nuc

UNIVERSITY OF
SURREY

Results for binding

E
D
${ }^{4} \mathrm{He}$
...unbound... -5.09 MeV

NB: All calculations assuming spherical wave functions...
-2.2 MeV
$\underline{\underline{-28.2 ~ M e V ~}}$

$\frac{-18 /-20 \mathrm{MeV}}{4-\alpha(-20.4)} \downarrow \stackrel{\underset{\sim}{0}}{\stackrel{i}{0}}$
${ }^{16} O$
${ }^{40} \mathrm{Ca}$

experiment

Matter distribution of 16 O and ${ }^{40} \mathrm{Ca}$:

Calculated matter radii at $\mathrm{m}_{\pi} \approx 470 \mathrm{MeV}$:

		${ }^{16} \mathrm{O}$	${ }^{40} \mathrm{Ca}$
$r_{\text {pt-matter }}:$	BHF [22]	2.35 fm	2.78 fm
	HF	2.39 fm	2.78 fm
	$\mathrm{G}(\omega)+\mathrm{ADC}(3)$	2.64 fm	2.97 fm
$r_{\text {charge }}:$	$\mathrm{G}(\omega)+\mathrm{ADC}(3)$	2.77 fm	3.08 fm
	Experiment [54, 55]	2.73 fm	3.48 fm

Spectral strength in ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$:

Particle-hole gaps:

${ }^{40} \mathrm{Ca}$

$\mathrm{m}_{\pi}=469 \mathrm{MeV}: \quad \sim 10 \mathrm{MeV}$

Expt (phys m_{π}): 7.5 MeV
C. Mcllroy, CB, et al., arXiv:1701.02607 [nucl-th]

Spectral strength in ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$:

UNIVRSITYOF

Future application for Ys in nuclei now possible

- Physical mass now under reach ($m_{\pi} \approx 145 \mathrm{MeV}$) for hyperons
- Need to improve on statistic for the NN sector
$\Omega \Omega$ potential

$N N\left({ }^{3} \mathrm{~S}_{1}\right)$ tensor potential

HALQCD coll. -- Talk of S. Aoki at Kavli institute, Oct. 2016

summary

Mid-masses and chiral interactions:

\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow Experimental binding is predicted accurately up to the lower sd shell (A~30) but deteriorates for medium mass isotopes (Ca and above) with roughly 1 MeV/A over binding.
\rightarrow New fits of chiral interaction are promising for low-energy observables and for scattering (see A. Idini, next).

HALQCD Nuclear forces:

\rightarrow Strong short range behavior calls for new ideas in ab-initio many-body methods. Diagram resummation through G-matrix is good starting point (to be extended)

\rightarrow At $m_{\pi}=469 \mathrm{MeV}$, closed shell $4 \mathrm{He}, 16 \mathrm{O}$ and 40 Ca are bound. But oxygen is unstable toward 4-a break up, calcium stays bound. Underestimation of radii increases with A do to large saturation density (as for EM(500)+NLO3NF).

Collaborators

UNIVERSITY OF SURREY
A. Cipollone, C. Mcllroy
A. Rios, A. Idini, F. Raimondi

V. Somà, T. Duguet

A. Carbone

M. Hjorth-Jensen
S. Aoki,
T. Doi, T. Hatsuda, Y. Ikeda,
T. Inoue,
N. Ishii, K. Murano,
H. Nemura, K. Sasaki
F. Etminan
T. Miyamoto,
T. Iritani
S. Gongyo
(U) $\mathrm{H}=\mathrm{A}$

B Universitat de Barcelona
Washington University inSt.Louis
A. Polls
W.H. Dickhoff,
S. Waldecker

TECHNISCHE

 UNIVERSITAT DARMSTADT

A TRIUMF

UNIVERSITY OF
SURREY

