Coupled cluster calculations of heavy and rare isotopes

Gaute Hagen Oak Ridge National Laboratory

TRIUMF, March 2nd, 2017

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Collaborators

@ ORNL / UTK: G. R. Jansen, T. Morris, T. Papenbrock, M. Schuster, Z. H. Sun

- @ MSU: W. Nazarewicz, F. Nunes, J. Rotureau
- @ Chalmers: B. Carlsson, A. Ekström, C. Forssén
- @ Hebrew U: N. Barnea, D. Gazit
- @ MSU/ U Oslo: M. Hjorth-Jensen
- @ Trento: G. Orlandini
- @ TRIUMF: S. Bacca, J. Holt, M. Miorelli, P. Navratil, S. R. Stroberg
- @ TU Darmstadt: C. Drischler, C. Stumpf, K. Hebeler, R. Roth, A. Schwenk, J. Simonis
- @ LLNL: K. Wendt

Outline

- The neutron skin and dipole polarizability of ⁴⁸Ca and ⁶⁸Ni
- Structure of ⁷⁸Ni
- Structure and decay of ¹⁰⁰Sn
- Gamow-Teller response in ¹³²Sn
- Optical potentials from coupledcluster theory

Ab-initio computations of nuclei – a decade ago

Controlled approximations

Current reach of ab-initio methods

Two remarkable interactions from chiral EFT: NNLO_{sat} & 1.8/2.0 (EM)

NNLO_{sat}: Accurate radii and BEs

- Simultaneous optimization of NN and 3NFs
- Include charge radii and binding energies of ³H, ^{3,4}He, ¹⁴C, ¹⁶O in the optimization
- Harder interaction: difficult to converge beyond ⁵⁶Ni

A. Ekström *et al,* Phys. Rev. C **91**, 051301(R) (2015).

1.8/2.0(EM): Accurate BEs Soft interaction: SRG NN from Entem & Machleidt with 3NF from chiral EFT

1.8/2.0 (EM) from K. Hebeler *et al* PRC (2011). The other chiral NN + 3NFs are from Binder et al, PLB (2014)

Neutron radius and skin of ⁴⁸Ca

G. Hagen *et al*, Nature Physics **12**, 186–190 (2016)

Uncertainty estimates from family of chiral interactions: K. Hebeler *et al* PRC (2011)

DFT:

SkM^{*}, SkP, Sly4, SV-min, UNEDF0, and UNEDF1

1.8/2.0 (EM)

- Neutron skin significantly smaller than in DFT
- Neutron skin almost independent of the employed Hamiltonian
- Our predictions for ⁴⁸Ca are consistent with existing data

 \bar{p} atoms - Trzcinska π - Friedman π - Gibbs & Dedonder α -scattering - Gils Theory - Hagen

Neutron skin of ²⁰⁸Pb

Dipole polarizability of ⁴⁸Ca

G. Hagen *et al*, Nature Physic **12**, 186–190 (2016)

Ab-initio prediction from correlation with R_p : 2.19 $\leq \alpha_D \leq 2.60 \text{ fm}^3$

- DFT results are consistent and within band of ab-initio results
- Data has been analyzed by Osaka-Darmstadt collaboration
- Ab-initio prediction overlaps with experimental uncertainty

Large charge radii questions magicity of ⁵²Ca

R. F. Garcia Ruiz et al, Nature Physics (2016) doi:10.1038/nphys3645

Image: COLLAPS Collaboration/Ronald Fernando Garcia Ruiz.

- Charge radii of ^{49,51,52}Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN
- Unexpected large charge radius questions the magicity of ⁵²Ca
- Theoretical models all underestimate the charge radius
- Ab-initio calculations reproduce the trend of charge radii

Experiment (this work)

DFT

CI

Neutron skin/dipole polarizability of ⁶⁸Ni

Neutron skin/dipole polarizability of ⁶⁸Ni

- Charge radii have
 been measured by
 the the COLLAPS
 collaboration at
 ISOLDE, CERN
- Neutron skin significantly larger than RPA results

Self consistent RPA results based on large set of EDFs from X. Roca-Maza Phys. Rev. C 92, 064304 (2015)

Measuremet of dipole strength in ⁶⁸Ni: D. Rossi et al, PRL 111 242503 (2013)

Nucleus	Δr_{np} (a)	Δr_{np} (b)	Δr_{np} (c)
⁶⁸ Ni	0.15 - 0.19	0.18 ± 0.01	0.16 ± 0.04
¹²⁰ Sn	0.12 - 0.16	0.14 ± 0.02	0.12 ± 0.04
²⁰⁸ Pb	0.13-0.19	0.16 ± 0.02	0.16 ± 0.03

Structure of ⁷⁸Ni from first principles

- From an observed correlation we predict the 2⁺ excited state in ⁷⁸Ni using the experimental data for the 2⁺ state in ⁴⁸Ca
- Similar correlations have been observed in other nuclei, e.g. Tjon line in light nuclei

G. Hagen, G. R. Jansen, and T. Papenbrock Phys. Rev. Lett. **117**, 172501 (2016) A high 2⁺ energy in ⁷⁸Ni indicates that this nucleus is doubly magic

A measurement of this state has been made at RIBF, RIKEN R. Taniuchi *et al.*, in preparation

Consistent with recent shell-model studies F. Nowacki *et al.*, PRL 117, 272501 (2016)

Excited states in ⁷⁸Ni and its neighbors

¹⁰⁰Sn – a nucleus of superlatives

Stable nucleus

- Heaviest self-conjugate doubly magic nucleus
- Largest known strength in allowed nuclear β-decay
- In the closest proximity to the proton dripline
- At the endpoint of the rapid proton capture process (Sn-Sb-Te cycle)
- Unresolved controversy regarding s.p. structure of ¹⁰¹Sn

Structure of the ligthest tin isotopes

Structure of the ligthest tin isotopes

Importance truncated CI results from **C. Stumpf** and R. Roth, valence space effective interactions from **S. R. Stroberg** and J. Holt.

Structure of the ligthest tin isotopes

¹⁰⁰In from a novel charge exchange coupledcluster equation-of-motion method

New method: 3p-3h charge-exchange EOM

$$\overline{H}_N R_\mu |\Phi_0\rangle = E_\mu R_\mu |\Phi_0\rangle$$

- 2.93(34) MeV
- Predict a 7⁺ ground-state for ¹⁰⁰In
- Ground-state spin of ¹⁰⁰In can be measured by CRIS collab. at CERN

Superallowed Gamow-Teller transition

- Prediction for the Gamow-Teller transition consistent with data
- Towards understanding the quenching of g_A
- Important implications for computations of 0vββ decay

Hinke et al, Nature (2012)

Model	Ref	unquenched	quenched
ESPM	[30]	17.78	10.00
MCSM	[8]	10.3	6.5
QRPA	[9]	8.95	
FFS	[9]	7.63	
extrapol.	[10]	9.8	5.2
SM+corr.	[7]	14.2	
LSSM	this work	~ 13.90	~ 7.82
LSSM			
(only 1_1^+)	this work	10.10	5.68

- Coupled-cluster computations predict a B(GT) of 4.7(5)
- B(GT) is currently targeted by upcoming precision measurements

Gamow-Teller response in ¹³²Sn

- Prediction for the Gamow-Teller strength in ¹³²Sn
- Strengths has been measured at RIKEN
- Results show that high energy tail is important to exhaust the sum rule

 Role of two-body currents on quenching on sum rule and Gamow Teller strengths will be examined

Optical potentials from coupled-cluster theory

J. Rotureau et al, Phys. Rev. C 95, 024315 (2017)

Coupled-cluster Green's function: $G^{CC}(\alpha, \beta, E) \equiv$ $\langle \Phi_{0,L} | \overline{a_{\alpha}} \frac{1}{E - (\overline{H} - E_{gs}^{A}) + i\eta} \overline{a_{\beta}^{\dagger}} | \Phi_{0} \rangle$ $+ \langle \Phi_{0,L} | \overline{a_{\beta}^{\dagger}} \frac{1}{E - (E_{as}^{A} - \overline{H}) - i\eta} \overline{a_{\alpha}} | \Phi_{0} \rangle$

Imaginary part of the neutron s-wave Green's function

- Green's function solved via the Lanczos technique (continued fractions)
- Using a Berggren basis allows stable results for eta -> 0

Inverting the Dyson equation we obtain the self-energy:

$$E^*(E) = [G^{(0)}(E)]^{-1} - G^{-1}(E)$$

Scattering phase shifts are obtained by the solving the equation:

$$-\frac{\hbar^2}{2\mu}\nabla^2\xi(\mathbf{r}) + \int d\mathbf{r}'\Sigma'(\mathbf{r},\mathbf{r}',E^+)\xi(\mathbf{r}') = E^+\xi(\mathbf{r})$$

See also talk by Andrea Idini, and C. Barbieri and B. K Jennings Phys.Rev. C72 (2005) 014613

Neutron elastic scattering on ¹⁶O with NNLO_{opt}

Consistent results between computed phase shifts and resonances computed directly in the Berggren basis via PA-EOMCCSD

$N_{ m max}$	$E(5/2^{+})$	$E(1/2^{+})$	$E(3/2^{+})$
8	-4.35	-2.62	2.68-i0.32
10	-4.49	-2.73	2.24-i 0.25
12	-4.56	-2.76	2.34 -i 0.21
14	-4.57	-2.80	2.26-i0.12

Neutron elastic scattering on ⁴⁰Ca

- Diffraction minima in good agreement with data
- Cross section overestimated due to lack of absorption (e.g. 0⁺ state in ⁴⁰Ca too high)
- Using a Berggren basis allows for stable results as ε –> 0.

⁴⁰Ca(n,n)⁴⁰Ca , E_{lab} = 5.3 MeV

- Prediction of dipole polarizability of ⁴⁸Ca consistent with data
- Predictions for dipole polarizability and neutron skin of ⁶⁸Ni
- ⁷⁸Ni is predicted to be doubly magic
- Structure and decay of ¹⁰⁰Sn
- Gamow-Teller response of ¹³²Sn
- Optical potentials from coupled-cluster theory – promising first results for ⁴⁰Ca+n with NNLO_{sat}

Dipole polarizability of ⁴⁸Ca

Other correlations in ⁴⁸Ca and ⁷⁸Ni

- Separation energy of ⁴⁸Ca and 2⁺ energy of ⁷⁸Ni does not correlate
- Separation energies of ⁴⁸Ca and ⁷⁸Ni do correlate
- Non-trivial correlation between the 2⁺ energy of ⁷⁸Ni and ⁴⁸Ca

