HPC

Ab Initio Nuclear Structure Calculations on High Performance Computing systems

Pieter Maris

lowa State University pmaris@iastate.edu

DOE-SciDAC3 NUCLEI NESAP project at NERSC INCITE award at ALCF and OLCF

Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Vancouver BC, March 1, 2017

P. Maris (ISU)

- High-Performance Computing
- No-Core Configuration Interaction approach
- Many-Fermion Dynamics for nuclear structure
- Algorithmic improvements: Lanczos vs. LOBPCG
- Porting and Tuning MFDn for Intel Xeon Phi 'KNL'
- Results for *p*-shell nuclei with chiral EFT up to N²LO

High-Performance Computing: Moore's law

Projected Performance Development

P. Maris (ISU)

Nuclear Structure Calculations on HPC

MFD

Lanczos vs. LOBPCG

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
5	DOE/SC/LBNL/NERSC United States	Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect Cray Inc.	622,336	14,014.7	27,880.7	3,939
6	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path Fujitsu	556,104	13,554.6	24,913.5	2,719
7	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
8	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100 Cray Inc.	206,720	9,779.0	15,988.0	1,312
9	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
10	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9	4,233

Top 10 (Nov. 2016)

- ► top 2 from China
- ► 5 from the US
 - 3 Titan @ ORNL Cray XK7 (GPU's)
 - 4 Sequoia @ LLNL IBM BG/Q
 - 5 Cori @ NERSC Cray XC40 (KNL)
 - 9 Mira @ ANL IBM BG/Q

イロト イヨト イヨト イヨ

10 Trinity @ LANL/SNL Cray XC40

High-Performance Computing: Challenges

- Parallel computing
 - Initially: Shared memory or distributed memory parallel systems
 - Currently: Systems have shared and distributed memory
 - use OpenMP within a node and MPI between nodes
- Accelerators
 - GPU's (NVIDIA), Xeon Phi (Intel), ...
 - Initially: as co-processor
 - Now/Soon: self-hosted
- Vectorization
 - Xeon Phi (KNL) has 512-bit vector units (8 double precision floats)
- Increasing performance gap between processor and memory
 - Available memory and memory bandwidth per PU decreases
 - Data locality and data placement is crucial

Highly nontrivial to achieve good performance

 Need to collaborate with applied mathematicians and computer scientists

Nuclear Structure Calculations

- Computational methods
 - Configuration Interaction (NCSM, and various variants thereof)
 - Coupled Cluster
 - In-Medium SRG
 - Many-Body Perturbation Theory
 - Nuclear Lattice Simulations
 - Quantum Monte Carlo (GFMC, AFDMC)
 - Self-Consistent Green's Functions
 - ▶ ...

all have advantages and disadvantages

all need (large) computers to obtain results

with quantifiable uncertainties

- High-Performance Computing systems can be useful provided we can efficiently utilize the available computing power
 - nontrivial to do so ...

HPC usage on DOE leadership class facilities

INCITE allocations

- largest allocation 2008 2015: Lattice QCD
- largest allocation 2016: optimize coal burner designs
- allocation 2017:
 - 90 M core hours on Titan (CC, NCSM, IUMD)
 - 80 M core hours on Mira (GFMC, NCSM)

HPC No-Core CI Moving to exascale

- - Cori @ NERSC
 - 9,304 Intel Xeon Phi 'KNL' nodes
 - NESAP early science project: MFDn
 - user access 2017
 - Summit @ ORNL
 - ~3,400 compute nodes
 - multiple IBM POWER 9 CPUs and NVIDIA Volta GPUs per node
 - over 512 GB memory per node
 - CAAR early science project: NUCCOR (Gaute Hagen)
 - peak power consumption 10 MW
 - user access 2018
 - Aurora @ ANL
 - over 50,000 compute nodes
 - next-generation Intel Xeon Phi (Knights Hill)
 - over 7 PB DRAM and persistent memory
 - peak power consumption 13 MW
 - user access 2019

- Expand wavefunction in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- No-Core: all A nucleons are treated the same
- Complete basis exact result
 - caveat: complete basis is infinite dimensional
- In practice
 - truncate basis
 - study behavior of observables as function of truncation
- Computational challenge
 - construct large sparse symmetric matrix H_{ij}
 - obtain lowest eigenvalues & -vectors corresponding to low-lying spectrum and eigenstates

- Increase of basis space dimension with increasing A and N_{max}
 - need calculations up to at least $N_{max} = 8$ for meaningful extrapolation and numerical error estimates
- More relevant measure for computational needs
 - number of nonzero matrix elements
 - Current limit 10¹³ to 10¹⁴ (Cori, Mira, Titan)

Many-Fermion Dynamics for nuclear structure

Configuration Interaction code for nuclear structure calculations

- Platform-independent, hybrid OpenMP/MPI, Fortran 90 (+ some C)
- Construct of many-body matrix H_{ij}
 - determine which matrix elements can be nonzero
 - evaluate and store nonzero matrix elements in compressed sparse block format (CSB)
- Obtain lowest eigenpairs using Lanczos algorithm or LOBPCG
 - eigenvalues: energy levels
 - eigenvectors: wavefunctions
 - most compute-intensive kernels
 - Lanczos: Sparse Matrix Vector Multiplication (SpMV)
 - LOBPCG: Sparse Matrix Matrix Multiplication (SpMM)
- Calculate observables from wavefunctions
- Biggest computational challenge
 - Effective use of aggregate memory
 - calculations limited by aggregate memory 10¹³ to 10¹⁴ nonzero matrix elements (80 to 800 TB)

11/34

Distributed symmetric matrix

- Store only half the matrix (upper or lower triangle)
- Have to do SpMV and SpMV^T with same data structure
- Load-balancing
 - 2-dimensional distribution of matrix over MPI ranks
 - Iocal load determined by number of nonzero matrix elements
 - can be achieved by even distribution of many-body (n, l, j) orbitals

TRIUMF. March 2017

Efficient distributed SpMV – MPI communication

Aktulga, Yang, Ng, PM, Vary, Concurr. Comput. 26 (2014), doi:10.1002/cpe.3129

- Overlap communication with computation
- Optimize mapping onto network topology for non-overlapping communication
 see also Oryspayev, PhD thesis 2016, ISU

Symmetric SpMV/SpMM implementation

Intel Ivy Bridge (Edison @ NERSC)

Aktulga, Afibuzzaman, Williams, Buluç, Shao, Yang, Ng, Maris, Vary, DOI 10.1109/TPDS.2016.2630699

- Compressed sparse row (CSR)
 - ok for SpMV
 - need private output vectors for SpMV^T to avoid race condition
 - prohibitively expensive on many-core architectures
- Compressed sparse block (CSB)
 - improves data locality and cache performance
 - allows for efficient OpenMP parallelization within nodes, for both SpMV (top) and SpMV^T (bottom)
- Block algorithm (LOBPCG)
 - SpMV on 'set of vectors' allows for vectorization

< ∃ >

Matrix sparsity structure

Consider 'diagonal' MPI rank

- Nonzero tiles of varying size (dashed lines), defined by bra and ket many-body (n, l, j) orbitals
- Tiles are combined to form (approximately) square blocks (CSB), with boundaries coinciding with tile boundaries(solid lines)

P. Maris (ISU)

Let *H* be a symmetric matrix. Then *H* can be reduced to a symetric tridiagonal matrix *T* via orthogonal unitary transformations, $H = Q_n T_n Q_n^T$

- For i = 1, set $\beta_1 = 0$ and initial vector q_1 with $||q_1|| = 1$
- While (not converged) do
 - 1. compute $p = H q_i$ i.e. perform Sparse Matrix-Vector Multiplication
 - 2. compute $\alpha_i = q_i^T \cdot (H q_i)$
 - 3. compute $k = p \alpha_i q_i \beta_i q_{i-1}$
 - 4. (orthogonalize k w.r.t. q_i for numerical stability)

more dot-products

i.e. perform dot-product

- 5. compute $\beta_{i+1} = ||k||$ 6. set $q_{i+1} = k/||k||$
- 7. increment i = i + 1
- 8. check (convergence) diagonalize small tridiagonal matrix
 - obtain eigen-values λ and -vectors v of T_n
 - compute $\beta_i | \frac{v_i}{\lambda} |$ for each desired eigenvalue
- Compute approximate eigenvectors of H from T_n and Q_n

LAPACK

- dimension 252 million, with 400 billion nonzero matrix elements
- runs on 124 nodes Edison at NERSC using 496 MPI ranks with
 6 OpenMP threads/MPI
- total runtime less than 10 minutes
- Lowest 5 eigenvalues of T_n after *n* Lanczos iterations
- ► Note: in MFDn we use single-precision for *H* and *Q* = {*q_i*} but double-precision for dot-products and *T_n* for numerical stability

P. Maris (ISU)

18/34

Locally Optimized Block Preconditioned Conjugate Gradient

- Set initial guess for $X^{(1)}$ consisting of k orthonormal vectors
 - ideally, consisting of approximate eigenvectors
 - e.g. smaller basis space, different H.O. parameter $\hbar\omega, \ldots$
- While (not converged) do
 - 1. apply preconditioner T
 - preconditioning is an art ...
 - kinetic energy is likely to be efficient, but too expensive
 - diagonal matrix element is cheap, but not efficient
 - compromise:

diagonal tiles of H, based on many-body (n, l, j) orbitals

- 2. orthonormalize using Cholesky QR
- 3. compute $HX^{(i)}$
- 4. do LOBPCG magic ...
- 5. check convergence
- $X^{(n)}$ consists of k orthonormal eigenvectors

Sparse Matrix-Matrix Multiplication

- Blocks of 8 vectors, targeting lowest 5 eigenstates
- ► *N*_{max} = 8: 114 iterations in 6.5 seconds (using random initial vectors)
- $N_{\text{max}} = 10$: 67 iterations in 19.8 seconds
- $N_{\text{max}} = 12$: 50 iterations in 109.4 seconds
- Despite doing approximately 1.6 times more work in SpMV/SpMM, LOBPCG factor of 2 faster than Lanczos

HPC No-Core CI MFDn Lanczos vs. LOBPCG Tuning for KNL Chiral EFT
HPC systems at NERSC

- Edison (in production since 2013)
 5,586 Intel 'Ivy Bridge' nodes
 - ▶ two 12 cores @ 2.4 GHz, 2 hyper-threads/core
 - one 256-bit-wide vector units per core
 - 64 GB DDR3 memory per core
 - Cori-I (in production since 2016) 2,004 Intel Xeon 'Haswell' nodes
 - 32 cores @ 2.3 GHz, 2 hyper-threads/core
 - two 256-bit-wide vector units per core
 - 128 GB DDR4 memory per core
 - Cori-II (limited user access)
 9,304 Intel Xeon Phi 'Knights Landing (KNL)' nodes
 - ▶ 68 cores @ 1.4 GHz, 4 hyper-threads/core
 - two 512-bit-wide vector units per core
 - 96 GB DDR4 memory, plus 16 GB MCDRAM (high-bandwith)
 - aggregate memory: 1 PB

- Porting no problem
- Without tuning, Cori-KNL significantly slower than Cori-HW
- Hyperthreading improves performance Edison, but not necessarily on Cori

Tuning single-node performance on KNL B0 whitebox

- Single-node performace using MFDn proxy
 - local workload of one node out of 5,000 nodes production run
 - construction of local matrix with dimension 117, 805, 679 × 116, 805, 483 and 7.5 × 10⁹ nonzero matrix elements
 - Iocal SpMV/SpMM and transpose SpMV/SpMM
 - no orthonormalization, no communication
- Tuning for KNL
 - optimize memory placement
 - explore MPI and OpenMP scaling within node
 - improve cache re-use and vectorization
 - use compiler report to see which loops vectorize automatically
 - use OpenMP4 directives for manual vectorization
 - split complicated innerloops into smaller and simpler subloops tuned to vector length and/or cache size
 - improve data locality
- Compare to Intel Haswell

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

SpMV and SpMM performance – DDR vs. MCDRAM ?

Cook, Maris, Shao, Wichmann, Wagner, O'neill, Phung and Bansal, LNCS 9945, 366 (2016), DOI 10.1007/978-3-319-46079-6-26

- 16 GB MCDRAM (high-bandwidth memory) can be used as extended cache, or explicitly managed
- Data placement using memkind library and FASTMEM directives

- SpMV on single vector
 - no vectorization, KNL slower than Haswell
 - both cache mode and quad+flat with vectors in MCDRAM improve performance
- SpMM on 4+ vectors
 - quad+flat with vectors in MCDRAM most efficient
 - KNL more efficient than Haswell

No-Core CI

No-Core CI Lanczos vs. LOBPCG Tuning for KNL

OpenMP vs. MPI on single KNL node ?

- No performance difference for setup and matrix construction
- SpMV more efficient with more MPI ranks?
 - local vectors smaller
 - more cache re-use?
- SpMM more efficient with fewer MPI ranks
 - smaller combined memory footprint
 - 8 vectors on 1 MPI rank barely fit in MCDRAM

1001200 Dates

counting

20

contine tiles

conflicting SPASE PRAINT

> TRIUMF. March 2017 26/34

20 50 Vectors

< 🗇 🕨

Summary of current status on Intel KNL

- Single-node performance matrix construction
 - similar performance as 'pre-optimized' code on Intel Haswell
 - hyper-threading helps, but more work to be done?
- Single-node LOBPCG diagonalization
 - explicit data management in MCDRAM
 - factor of 1.5 to 2.0 improvement over Intel Haswell
- Large-scale runs
 - Ioad balancing of computational load good
 - bottleneck: MPI communication during LOBPCG diagonalization
 - communication volume 8 to 16 times larger than with Lanczos
 - one MPI rank per node: collective comm. by one core at a time MPI standard allows more threads to perform MPI communication however, MPI standard only guarantees correctness, not efficiency in practice collective MPI calls get serialized ...
 - better communication performance with 4 to 16 MPI ranks per node, but overall memory footprint and communication volume increase
- Work in progress/under consideration: writing our own multithreaded collective MPI communication?

Ground state energies up to N²LO for A = 3 to A = 9

P. Maris (ISU)

TRIUMF, March 2017 28 / 34

N = Z Ground state energies up to N²LO

P. Maris (ISU)

HPC

Including N²LO 3N interaction: ⁶Li

LENPIC collaboration, work in progress

- extrapolation uncertainty
 ~ 0.1 MeV
- dependence on SRG α \sim 0.2 MeV
- dependence on (c_D, c_E)
 ~ 0.1 MeV
- gs energy NN only
 -31.0±0.2 MeV with 3NF
 -31.4±0.3 MeV

P. Maris (ISU)

TRIUMF, March 2017

30/34

Ground state energies up to N²LO including 3NF

P. Maris (ISU)

- Two low-lying 1⁺ levels
 - LO: well seperated
 - NLO (and higher): mix and cross, depending on basis parameters (N_{max}, ħω)
- Can be distinguished by e.g. magnetic moments
 - state with µ ~ 0.4 and E_x ~ 2 to 3 MeV
 - state with μ ~ 0.8 and E_x strongly dependent on basis

Jurgenson et al. PRC87 (2013)

Spectrum ¹⁰B at N²LO: influence of 3NFs

- At N²LO without 3NF's: lowest 1⁺ below 3⁺
- With 3NF's correct 3⁺ ground state
- ▶ Preferred LEC's: (*c*_D, *c*_E) = (6.0, -0.546)
- Numerical uncertainties hard to estimate due to mixing ...

- Conclusions and Outlook
 - HPC expected to reach exascale capabilities by 2020
 - Highly nontrivial to efficiently utilize current & future HPC systems
 - Need to collaborate with applied mathematicians and computer scientists
 - Systematic calculations for p-shell nuclei

 - Same interactions also used for A = 3 and A = 4
 - Faddeev and Faddeev–Yakubovsky calculations
 - benchmark for NCCI calculations
 - Same interactions also used for heavier nuclei
 - IM-SRG and CC
 - benchmark with NCCI calculations for ¹⁶O
 - Uncertainty Quantification
 - Many-body method dependence on basis space
 - Renormalization SRG parameter dependence
 - ► Nuclear interaction order in *χ*EFT expansion