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HPC

High-Performance Computing: Moore’s law
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HPC

Rmax Rpeak  Power
Rank Site System Cores  (TFlop/s) (TFlop/s] (kW)
1 Sunway TaihuLight - Su P, 10,649,600 930146 1254359 15371

Top 10 (Nov. 2016)

» top 2 from China
» 5 from the US
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United States. 2.3GH:
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HPC

High-Performance Computing: Challenges

» Parallel computing
» Initially: Shared memory or distributed memory parallel systems
» Currently: Systems have shared and distributed memory
» use OpenMP within a node and MPI between nodes
» Accelerators
» GPU’s (NVIDIA), Xeon Phi (Intel), ...
» Initially: as co-processor
» Now/Soon: self-hosted
» Vectorization
» Xeon Phi (KNL) has 512-bit vector units (8 double precision floats)
» Increasing performance gap between processor and memory
» Available memory and memory bandwidth per PU decreases
» Data locality and data placement is crucial

Highly nontrivial to achieve good performance

» Need to collaborate with applied mathematicians
and computer scientists
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HPC

Nuclear Structure Calculations

» Computational methods

Configuration Interaction (NCSM, and various variants thereof)
Coupled Cluster

In-Medium SRG

Many-Body Perturbation Theory

Nuclear Lattice Simulations

Quantum Monte Carlo (GFMC, AFDMC)

Self-Consistent Green’s Functions

VY VY Y VY VY VvYY

all have advantages and disadvantages
all need (large) computers to obtain results
with quantifiable uncertainties
» High-Performance Computing systems can be useful
provided we can efficiently utilize the available computing power
» nontrivialto do so ...
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HPC

HPC usage on DOE leadership class facilities

INCITE Allocation Trends

2008 - 2016

2016
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fsssd 6th largest out of 60

b 13th rargest out of 57

bed 10th largest out of 69

_yﬁl ath IargeT out of 59

INCITE allocations
» largest allocation 2008 — 2015:

7———’-——1 ‘Sth largest jout of 56 .
S — Lattice QCD
7_’_r 3rd largest out of 56

. » largest allocation 2016:

4" 6th largest out/of 61

optimize coal burner designs

» allocation 2017:
» 90 M core hours on Titan

Jd 10th largest out of 66 Hlargest Project (CC, NCSM, IUM D)
c. o ‘““’W‘E"TEVNP » 80 M core hours on Mira
th largest out of
; ; GFMC, NCSM
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HPC

Moving to exascale

» Cori @ NERSC

>

>

>

9,304 Intel Xeon Phi ’KNL nodes
NESAP early science project: MFDn
user access 2017

» Summit @ ORNL

vV vy vy VvYyy

>

~3,400 compute nodes

multiple IBM POWER 9 CPUs and NVIDIA Volta GPUs per node
over 512 GB memory per node

CAAR early science project: NUCCOR (Gaute Hagen)

peak power consumption 10 MW

user access 2018

» Aurora @ ANL

v

vV vy VvYy

over 50,000 compute nodes
next-generation Intel Xeon Phi (Knights Hill)
over 7 PB DRAM and persistent memory
peak power consumption 13 MW

user access 2019

P. Maris (ISU) Nuclear Structure Calculations on HPC TRIUMF, March 2017 8/34



No-Core CI

No-Core Configuration Interaction approach

v

Expand wavefunction in basis states |V) = ) a;|®;)
Express Hamiltonian in basis ((D,-]I:I|d>,-> = Hj
Diagonalize Hamiltonian matrix Hj;

No-Core: all A nucleons are treated the same
Complete basis — exact result

» caveat: complete basis is infinite dimensional
In practice

» truncate basis

» study behavior of observables as function of truncation
Computational challenge

» construct large sparse symmetric matrix Hj

» obtain lowest eigenvalues & -vectors corresponding to

low-lying spectrum and eigenstates

v

v

v

v

v

\4
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No-Core CI

NCCI approach — Main Challenge
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» Increase of basis space dimension with increasing A and N,,.,
» need calculations up to at least N, = 8
for meaningful extrapolation and numerical error estimates

» More relevant measure for computational needs

» number of nonzero matrix elements
» current limit 103 to 10" (cori, Mira, Titan)
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MFDn

Many-Fermion Dynamics for nuclear structure

Configuration Interaction code for nuclear structure calculations

» Platform-independent, hybrid OpenMP/MPI, Fortran 90 (+ some C)
» Construct of many-body matrix Hj;
» determine which matrix elements can be nonzero
» evaluate and store nonzero matrix elements
in compressed sparse block format (CSB)
» Obtain lowest eigenpairs using Lanczos algorithm or LOBPCG
» eigenvalues: energy levels
» eigenvectors: wavefunctions
» most compute-intensive kernels
» Lanczos: Sparse Matrix Vector Multiplication (SpMV)
» LOBPCG: Sparse Matrix Matrix Multiplication (SpMM)
» Calculate observables from wavefunctions

Biggest computational challenge
» Effective use of aggregate memory
» calculations limited by aggregate memory
10" to 10'* nonzero matrix elements (80 to 800 TB)
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MFDn

Distributed symmetric matrix

» Store only half the matrix (upper or lower triangle)
» Have to do SpMV and SpMVT with same data structure
» Load-balancing
» 2-dimensional distribution of matrix over MPI ranks
» local load determined by number of nonzero matrix elements
» can be achieved by even distribution of many-body (n, /, ) orbitals
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MFDn

Efficient distributed SpMV

scatter

» Communication needs to be T
load-balanced as well

» Vectors distributed over all AR AN
processors for orthogonalization
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MFDn

Efficient distributed SpMV — MPI communication

Aktulga, Yang, Ng, PM, Vary, Concurr. Comput. 26 (2014), doi:10.1002/cpe.3129

2000 10 _
BN, =10
_— dim=13B
1800
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o
verl ver2 ver3 vera vers ver6

» Overlap communication with computation

» Optimize mapping onto network topology for non-overlapping
communication see also Oryspayev, PhD thesis 2016, ISU
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MFDn

Symmetric SpMV/SpMM implementation
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Aktulga, Afibuzzaman, Williams, Bulug, Shao, Yang,
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48

Ng, Maris, Vary, DOI 10.1109/TPDS.2016.2630699
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» Compressed sparse row (CSR)
» ok for SpMV
» need private output vectors for
SpMVT to avoid race condition
» prohibitively expensive on
many-core architectures

» Compressed sparse block (CSB)

» improves data locality
and cache performance

» allows for efficient OpenMP
parallelization within nodes,
for both SpMV (top)
and SpMVT (bottom)

» Block algorithm (LOBPCG)
» SpMV on ’set of vectors’ allows
for vectorization

TRIUMF, March 2017
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MFDn

Matrix sparsity structure

Consider 'diagonal’ MPI rank

» Nonzero tiles of varying size (dashed lines),
defined by bra and ket many-body (n, /, j) orbitals

» Tiles are combined to form (approximately) square blocks (CSB),
with boundaries coinciding with tile boundaries(solid lines)
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Lanczos vs. LOBPCG

Lanczos algorithm as implemented in MFDn

Let H be a symmetric matrix. Then H can be reduced to a symetric tri-
diagonal matrix T via orthogonal unitary transformations, H = Q,T,Q/

» Fori=1, set 5y = 0 and initial vector g; with ||g¢|| = 1
» While (not converged) do

1. compute p= Hq; i.e. perform Sparse Matrix-Vector Multiplication

2. compute a; = q,-T : (H q,) i.e. perform dot-product

3. compute k = p — a;q; — Biqi_1

4. (orthogonalize k w.r.t. g; for numerical stability) more dot-products

5. compute ﬂi+1 = ||k|| and one more dot-products

6. set i1 = K/||K||

7. incrementi =i+ 1

8. check (convergence) diagonalize small tridiagonal matrix
> obtain eigen-values X\ and -vectors v of T, LAPACK

» compute 3;| 3| for each desired eigenvalue
» Compute approximate eigenvectors of H from T, and Q,
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Lanczos vs. LOBPCG

Lanczos algorithm

0 ,
‘7 ) | » dimension 252 million,
NIshie with 400 billion
- nonzero matrix
elements
- gg > runs on 124 nodes
— Edison at NERSC
— 172 using 496 MPI ranks
— 32 with
6 OpenMP
T T N
40 80

i
(=]

Energy (MeV)

& )
S S
T T T

threads/MPI

> total runtime

P NI IS RS R
120 160 200 240 less than 10 minutes
Lanczos iteration

0

» Lowest 5 eigenvalues of T, after n Lanczos iterations
» Note: in MFDn we use single-precision for H and Q = {q;} but
double-precision for dot-products and T, for numerical stability
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Lanczos vs. LOBPCG

LOBPCG in collaboration with applied mathematicians from Berkeley

Locally Optimized Block Preconditioned Conjugate Gradient

» Set initial guess for X(!) consisting of k orthonormal vectors
» ideally, consisting of approximate eigenvectors
» e.g. smaller basis space, different H.O. parameter hw, ...
» While (not converged) do
1. apply preconditioner T
> preconditioning is an art ...
» kinetic energy is likely to be efficient, but too expensive
» diagonal matrix element is cheap, but not efficient
» compromise:
diagonal tiles of H, based on many-body (n, I, j) orbitals
2. orthonormalize using Cholesky QR
3. compute H X() Sparse Matrix-Matrix Multiplication
4. do LOBPCG magic ..
5. check convergence

» X(" consists of k orthonormal eigenvectors
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LOBPCG

v
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Lanczos vs. LOBPCG

Shao, Aktulga, Yang, Ng, PM, Vary, arXiv:1609.01689 [cs.NA]
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o 001 E S102 1\,
g 3 K] \
L =1
£ 0001k E 2 N \
o E o N N\
5 F [S I \\ N
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LOBPCG iteration n iteration
Blocks of 8 vectors, targeting lowest 5 eigenstates

Nmax = 8: 114 iterations in 6.5 seconds
Nmax = 10: 67 iterations in 19.8 seconds

Nmax = 12: 50 iterations in 109.4 seconds

(using random initial vectors)

Despite doing approximately 1.6 times more work in SpMV/SpMM,
LOBPCG factor of 2 faster than Lanczos

P. Maris (ISU)
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HPC systems at NERSC

» Edison (in production since 2013)
5,586 Intel 'Ivy Bridge’ nodes
» two 12 cores @ 2.4 GHz, 2 hyper-threads/core
» one 256-bit-wide vector units per core
» 64 GB DDR3 memory per core
» Cori-l (in production since 2016)
2,004 Intel Xeon 'Haswell’ nodes
» 32 cores @ 2.3 GHz, 2 hyper-threads/core
» two 256-bit-wide vector units per core
» 128 GB DDR4 memory per core
» Cori-ll (limited user access)
9,304 Intel Xeon Phi ’Knights Landing (KNL)’ nodes
68 cores @ 1.4 GHz, 4 hyper-threads/core
two 512-bit-wide vector units per core
96 GB DDR4 memory, plus 16 GB MCDRAM (high-bandwith)
aggregate memory: 1 PB

v

vV vy
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Tuning for KNL

Edison vs. Cori-Haswell vs. Cori-KNL

Edison
Edison HT2
Cotwrrz | | 1OB N.
S | at Nmax =8

» dimension 160 million

» number of nonzero’s
124 billion

» 30 compute nodes
(could run on
15 nodes on Cori)

%)
=
=)

ESENEN

©w
=3
S

Wall clock time (sec)
z E

)
=]

=Y
=
T

v

Porting — no problem
Without tuning, Cori-KNL significantly slower than Cori-HW

Hyperthreading improves performance Edison,
but not necessarily on Cori

v

v
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Tuning for KNL

Tuning single-node performance on KNL BO whitebox

» Single-node performace using MFDn proxy
» local workload of one node out of 5,000 nodes production run
» construction of local matrix
with dimension 117,805,679 x 116, 805, 483
and 7.5 x 10° nonzero matrix elements
> local SpMV/SpMM and transpose SpMV/SpMM
» no orthonormalization, no communication

» Tuning for KNL

» optimize memory placement

» explore MPI and OpenMP scaling within node

» improve cache re-use and vectorization
» use compiler report to see which loops vectorize automatically
» use OpenMP4 directives for manual vectorization
» split complicated innerloops into smaller and simpler subloops

tuned to vector length and/or cache size

> improve data locality

» Compare to Intel Haswell
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Tuning for KNL

SpMV and SpMM performance — DDR vs. MCDRAM ?

Cook, Maris, Shao, Wichmann, Wagner, O’neill, Phung and Bansal, LNCS 9945, 366 (2016), DOI 10.1007/978-3-319-46079-6_26

» 16 GB MCDRAM (high-bandwidth memory)
can be used as extended cache, or explicitly managed

» Data placement using memkind library and FASTMEM directives
» SpMV on single vector

6o = haowell » no vectorization, KNL
50 EEE KNL (DDR) slower than Haswell
_ EEN KNL (cache) » both cache mode and
©40 S B2 KNL (memkind) quad-flat with vectors
jg, 30 §§§§§ in MCDRAM improve
3 S performance
320 o
= » SpMM on 4+ vectors
53
10 ] 5 » quad-+flat with vectors in
[ XX KX X .
0 S K1 ) MCDRAM most efficient
m=1 m=4 m=8 . .
Number of right hand side vectors > KNL more efficient
than Haswell
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Tuning for KNL

OpenMP vs. MPI on single KNL node ?

» No performance difference
for setup and matrix
construction

» SpMV more efficient with
more MPI ranks?

» local vectors smaller
» more cache re-use?

» SpMM more efficient with

fewer MPI ranks
» smaller combined

8 MPI, 8 OMP

4 MPIL, 16 OMP
2 MPL 32 OMP
1 MPI, 64 OMP

wall time (seconds)
—
runll IR PR TR SO RPN B

S memory footprint
T S g 'S » 8 vectors on 1 MPI rank
$ ® barely fit in MCDRAM

P. Maris (ISU) Nuclear Structure Calculations on HPC TRIUMF, March 2017 25/34



Tuning for KNL
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Tuning for KNL

Summary of current status on Intel KNL

» Single-node performance matrix construction
» similar performance as ‘pre-optimized’ code on Intel Haswell
» hyper-threading helps, but more work to be done?
» Single-node LOBPCG diagonalization
» explicit data management in MCDRAM
» factor of 1.5 to 2.0 improvement over Intel Haswell
» Large-scale runs
» load balancing of computational load good
» bottleneck: MPI communication during LOBPCG diagonalization
» communication volume 8 to 16 times larger than with Lanczos
» one MPI rank per node: collective comm. by one core at a time
MPI standard allows more threads to perform MPI communication
however, MPI standard only guarantees correctness, not efficiency
in practice collective MPI calls get serialized . ..
» better communication performance with 4 to 16 MPI ranks per node,
but overall memory footprint and communication volume increase
» Work in progress/under consideration:

writing our own multithreaded collective MPl communication?
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Ground state energy (MeV)

Chiral EFT

Ground state energies up to N2LOfor A=3t0 A=9
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LO to N°LO chiral NN potential
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o

(3/2,1/2) 4

=

» NN only

» R=1.0fm

1 » many-body
uncertainties
shown

LENPIC collaboration

in preparation
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Chiral EFT

N = Z Ground state energies up to N2LO

Energy per nucleon (MeV)
]

| | | |
4 8 12 16
A (N=Z nuclei)
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Chiral EFT

Including N2LO 3N interaction: Li

LENPIC collaboration, work in progress

chiral N’LO, R=1.0 fm; solid: &t = 0.04 fm® (he = 20 MeV), open: a = 0.08 fm” (ho = 16 MeV) > eXtrapOI_atlon
L s s S uncertainty
2o = N NN only (32 MeV) |_|
22 vv NN+3N_ ~ 0.1 MeV
ooz o—ec =20c =-0.193|
S o4l % .- c2=4.0, cz=»0.365 1 * dependence
[*} b
2 \ Y a0y =60,c,=-0.546 on SRG «
:;B 2 3 e ~ 0.2 MeV
g | » dependence
g o8k on (CDa CE)
T | ~ 0.1 MeV
=1
%-307 > gs energy
i NN only
32 —-31.0+0.2 MeV
1 1 1 1 1 H
0 4 8 12 16 20 with 3NF
Ninax —-31.44+0.3 MeV
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Chiral EFT

Ground state energies up to N2LO including 3NF
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Chiral EFT

Spectrum 9B: 1+ states (NN-only)

1" excitation energy (relative to 3% (MeV)
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16 24 32 40 48
ho (MeV)

» Two low-lying 17 levels
» LO: well seperated
» NLO (and higher):
mix and cross,
depending on basis
parameters (Nmax, iw)

» Can be distinguished by
€.g. magnetic moments
» state with u ~ 0.4
and E; ~ 210 3 MeV
» state with n ~ 0.8
and E; strongly
dependent on basis
Jurgenson et al. PRC87 (2013)
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Chiral EFT

Spectrum 9B at N2LO: influence of 3NFs

cp=20,c,=-0.193 ¢ =40,c,=-0.365  c,=60,c,=-0.546

1" excitation energy (MeV)

+

16 20 24 28 16 20 24 28 16 20 24 28 16 20 24 28
ho (MeV) ho (MeV) ho (MeV) ho (MeV)

v

At N?LO without 3NF’s: lowest 11 below 3+

With 3NF’s correct 3™ ground state

Preferred LEC’s: (cp, cg) = (6.0, —0.546)

Numerical uncertainties hard to estimate due to mixing . ..

v

v
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Conclusions and Outlook

» HPC expected to reach exascale capabilities by 2020

» Highly nontrivial to efficiently utilize current & future HPC systems
» Need to collaborate with applied mathematicians
and computer scientists

» Systematic calculations for p-shell nuclei

» Order-by-order in YEFT

» Same interactions also usedfor A=3and A=4
» Faddeev and Faddeev—Yakubovsky calculations
» benchmark for NCCI calculations

» Same interactions also used for heavier nuclei
» IM-SRG and CC
» benchmark with NCCI calculations for '*O

» Uncertainty Quantification
» Many-body method — dependence on basis space
» Renormalization — SRG parameter dependence
» Nuclear interaction — order in xEFT expansion

P. Maris (ISU) Nuclear Structure Calculations on HPC TRIUMF, March 2017 34/34



	High-Performance Computing
	No-Core Configuration Interaction approach
	Many-Fermion Dynamics for nuclear structure
	Algorithmic improvements: Lanczos vs. LOBPCG
	Porting and Tuning MFDn for Intel Xeon Phi 'KNL'
	Results for p-shell nuclei with chiral EFT up to N2LO

