Progress in Hb Initio Techniques in Nuclear Physics, TRIUMF,Vancouver, BC, Feb 28 - March 3, 2017

CONSISTENT, HICH-QUALITY TWO-NUCLEON POTENTIALS UP TO FIFTH ORDER OF THE CHIRAL EXPANSION

R. Machleidt

University of Idaho

OUTLINE

- Current status \& current issues
- How to address the open issues?
- Consistent interactions up to N4LO
- Keeping the error budget low
- Conclusions

CURRENT STATUS

NoLO
$\left(Q / \Lambda_{\chi}\right)^{3}$

$\mathbf{N}^{3} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{4}$

$\mathbf{N}^{4} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{5}$

$\mathbf{N}^{5} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{6}$

WHAT HAVE WE ACHIEVED WITH THOSE FORCES?

- There has been some success (ground state of 10B, drip lines, nuclear matter saturation, orbit evolution, etc.), but some persistent problems remain.
- In the few-body sector: Ry puzzle, Nod break-up, ...
$\mathrm{N}-\mathrm{d} \mathrm{A}_{\mathrm{y}}$ calculations by Witala et al.

chiral $\mathrm{N}^{3} \mathrm{LO}+3 \mathrm{NF} \mathrm{N}^{3} \mathrm{LO}(\pi \pi+\mathrm{D}+\mathrm{E})$
- chiral $\mathrm{N}^{3} \mathrm{LO}+3 \mathrm{NF} \mathrm{N}^{3} \mathrm{LO}(\pi \pi+2 \pi 1 \pi+\mathrm{D}+\mathrm{E})$
- chiral $\mathrm{N}^{3} \mathrm{LO}$
- TUNL nd data
- chiral $\mathrm{N}^{3} \mathrm{LO}+3 \mathrm{NF} \mathrm{N}^{3} \mathrm{LO}(\pi \pi+2 \pi 1 \pi+$ ring $+\mathrm{D}+\mathrm{E})$

CURRENT STATUS AND OPEN ISSUES

- Current status: 2NFs and 3NFs up to N3LO are applied in nuclear few- and many-body systems.
- In general, quite a bit of success, but some persistent problems remain.
- In the few-body sector: Ry puzzle, N-d break-up, ...
- Light nuclei: Spectra not perfect.

SPECTRA OF SOME OXYGEN ISOTOPES

Hergert et al., PRL 110, 242501 (2013) \& in prep.
From Roth

$\mathbf{N N}+\mathbf{3 N}$ full $($ chiral NN $+3 \mathrm{~N})$
$\Lambda_{3 N}=400 \mathrm{MeV}, \alpha=0.08 \mathrm{fm}^{4}, h \Omega=16 \mathrm{MeV}$

CURRENT STATUS AND OPEN ISSUES

- Current status: 2NFs and 3NFs up to N3LO are applied in nuclear few- and many-body systems.
- In general, quite a bit of success, but some persistent problems remain.
- In the few-body sector: Ry puzzle, N-d break-up, ...
- Light nuclei: Spectra not perfect.
- The radii of nuclei

Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces

V. Lapoux, ${ }^{1, *}$ V. Somà, ${ }^{1}$ C. Barbieri, ${ }^{2}$ H. Hergert, ${ }^{3}$ J. D. Holt, ${ }^{4}$ and S. R. Stroberg ${ }^{4}$
${ }^{1}$ CEA, Centre de Saclay, IRFU, Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
${ }^{2}$ Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
${ }^{3}$ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,
Michigan State University, East Lansing, Michigan 48824, USA
${ }^{4}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
(Received 29 April 2016; published 27 July 2016)

FIG. 1. Oxygen binding energies. Results from SCGF (DGF and GGF) and IMSRG calculations with EM and $\mathrm{NNLO}_{\text {sat }}$ are displayed along with experimental data.
ared to calculations with EM [27-29] and $\mathrm{NNLO}_{\text {sat }}$ [36]. Bands span results from GGF and MR-IMSRG schemes.

FIG. 5. Matter radii from our analysis and given in Table I,

CURRENT STATUS AND OPEN ISSUES

- Current status: 2NFs and 3NFs up to N3LO are applied in nuclear few- and many-body systems.
- In general, quite a bit of success, but some persistent problems remain.
- In the few-body sector: Ry puzzle, N-d break-up, ...
- Light nuclei: Spectra not perfect.
- The radii of nuclei
- Overbinding of intermediate-mass nuclei

Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces

V. Lapoux, ${ }^{1, *}$ V. Somà, ${ }^{1}$ C. Barbieri, ${ }^{2}$ H. Hergert, ${ }^{3}$ J. D. Holt, ${ }^{4}$ and S. R. Stroberg ${ }^{4}$
${ }^{1}$ CEA, Centre de Saclay, IRFU, Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
${ }^{2}$ Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
${ }^{3}$ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,
Michigan State University, East Lansing, Michigan 48824, USA
${ }^{4}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
(Received 29 April 2016; published 27 July 2016)

FIG. 1. Oxygen binding energies. Results from SCGF (DGF and GGF) and IMSRG calculations with EM and $\mathrm{NNLO}_{\text {sat }}$ are displayed along with experimental data.
compared to calculations with EM [27-29] and $\mathrm{NNLO}_{\text {sat }}$ [36]. Bands span results from GGF and MR-IMSRG schemes.

FIG. 5. Matter radii from our analysis and given in Table I,

FIG. 1. Oxygen binding energies. Results from SCGF (DGF and GGF) and IMSRG calculations with EM and $\mathrm{NNLO}_{\text {sat }}$ are displayed along with experimental data.

Overbinding of intermediate-mass nuclei

Oxygen

FIG. 1. Oxygen binding energies. Results from SCGF (DGF and GGF) and IMSRG calculations with EM and $\mathrm{NNLO}_{\text {sat }}$ are displayed along with experimental data.

Overbinding of intermediate-mass nuclei

Oxygen

FIG. 1. Oxygen binding energies. Results from SCGF (DGF and GGF) and IMSRG calculations with EM and $\mathrm{NNLO}_{\text {sat }}$ are displayed along with experimental data.

CURRENT STATUS AND OPEN ISSUES

- Current status: 2NFs and 3NFs up to N3LO are applied in nuclear few- and many-body systems.
- In general, quite a bit of success, but some persistent problems remain.
- In the few-body sector: Ry puzzle, N-d break-up, ...
- Light nuclei: Spectra not perfect.
- The radii of nuclei
- Overbinding of intermediate-mass nuclei
- Convergence of the chiral expansion in the many-body system

From Sammarruca et al., PRC 91, 054311 (2015).

CURRENT STATUS AND OPEN ISSUES

- Current status: 2NFs and 3NFs up to N3LO are applied in nuclear few- and many-body systems.
- In general, quite a bit of success, but some persistent problems remain.
- In the few-body sector: Ry puzzle, N-d break-up, ...
- Light nuclei: Spectra not perfect.
- The radii of nuclei
- Overbinding of intermediate-mass nuclei
- Convergence of the chiral expansion in the many-body system

BECAUSE OF THE PROBLEMS JUST POINTED OUT, IMPROVEMENT OF CURRENT NUCLEAR FORCES IS CALLED FOR.

-How?
-Revisit the lower orders

NLO $\left(Q / \Lambda_{\chi}\right)^{2}$

$\mathbf{N}^{3} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{4}$

$\mathbf{N}^{4} \mathbf{L} \mathbf{O}$
$\left(Q / \Lambda_{\chi}\right)^{5}$

$\mathbf{N}^{5} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{6}$

NNLO revisited:

 Ekstroem et al., 2013+ Carlsson et al., 2016 NNLO ${ }_{\text {opt }}$ $\mathrm{NNLO}_{\text {sat }}$ $\mathrm{NNLO}_{\text {sep }}$ $\mathrm{NNLO}_{\text {sim }}$
NNLO/N3LO revisited:

 Piarulli et al., 2015+
Local potentials.

R. Machleidt

BECAUSE OF THE PROBLEMS JUST POINTED OUT, IMPROVEMENT OF CURRENT NUCLEAR FORCES IS CALLED FOR.

-How?

-Revisit the lower orders
(see talks by Ekstroem, Hagen, Papenbrock, ...)

BECAUSE OF THE PROBLEMS JUST POINTED OUT, IMPROVEMENT OF CURRENT NUCLEAR FORCES IS CALLED FOR.

-How?
-Revisit the lower orders

(see talks by Ekstroem, Hagen, Papenbrock, ...)
-Move up to higher orders

NLO
$\left(Q / \Lambda_{\chi}\right)^{2}$

Krebs et al. $(2012,2013)$

LO $\left(Q / \Lambda_{\chi}\right)^{0}$	$<$
$\mathbf{N L O}$	
$\left(Q / \Lambda_{\chi}\right)^{2}$	

$\left(Q / \Lambda_{\chi}\right)^{5}$
$\mathbf{N}^{5} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{6}$
NN pots up to N4LO
TRIUMF, 02/28/2017

$+\ldots$

LO $\left(Q / \Lambda_{\chi}\right)^{0}$	$<$
$\mathbf{N L O}$	
$\left(Q / \Lambda_{\chi}\right)^{2}$	

NN pots up to N4LO

$\mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{0}$

NLO
$\left(Q / \Lambda_{\chi}\right)^{2}$

All possible 20 isospin-spin-momentum/position structures occur in the 3 NF at N 4 LO !

Epelbaum et al., Eur. Phys. J. A51, 26 (2015)

Generators \mathcal{G} in momentum space	Generators $\tilde{\mathcal{G}}$ in coordinate space
$\mathcal{G}_{1}=1$	$\tilde{\mathcal{G}}_{1}=1$
$\mathcal{G}_{2}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3}$	$\tilde{\mathcal{G}}_{2}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3}$
$\mathcal{G}_{3}=\vec{\sigma}_{1} \cdot \vec{\sigma}_{3}$	$\tilde{\mathcal{G}}_{3}=\vec{\sigma}_{1} \cdot \vec{\sigma}_{3}$
$\mathcal{G}_{4}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{3}$	$\tilde{\mathcal{G}}_{4}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{3}$
$\mathcal{G}_{5}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$	$\tilde{\mathcal{G}}_{5}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$
$\mathcal{G}_{6}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot\left(\vec{\sigma}_{2} \times \vec{\sigma}_{3}\right)$	$\tilde{\mathcal{G}}_{6}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot\left(\vec{\sigma}_{2} \times \vec{\sigma}_{3}\right)$
$\mathcal{G}_{7}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{2} \cdot\left(\vec{q}_{1} \times \vec{q}_{3}\right)$	$\tilde{\mathcal{G}}_{7}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{2} \cdot\left(\hat{r}_{12} \times \hat{r}_{23}\right)$
$\mathcal{G}_{8}=\vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{1} \cdot \vec{\sigma}_{3}$	$\tilde{\mathcal{G}}_{8}=\hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{23} \cdot \vec{\sigma}_{3}$
$\mathcal{G}_{9}=\vec{q}_{1} \cdot \vec{\sigma}_{3} \vec{q}_{3} \cdot \vec{\sigma}_{1}$	$\tilde{\mathcal{G}}_{9}=\hat{r}_{23} \cdot \vec{\sigma}_{3} \hat{r}_{12} \cdot \vec{\sigma}_{1}$
$\mathcal{G}_{10}=\vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{3} \cdot \vec{\sigma}_{3}$	$\tilde{\mathcal{G}}_{10}=\hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{12} \cdot \vec{\sigma}_{3}$
$\mathcal{G}_{11}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{1} \cdot \vec{\sigma}_{2}$	$\tilde{\mathcal{G}}_{11}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{23} \cdot \vec{\sigma}_{2}$
$\mathcal{G}_{12}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{3} \cdot \vec{\sigma}_{2}$	$\tilde{\mathcal{G}}_{12}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{12} \cdot \vec{\sigma}_{2}$
$\mathcal{G}_{13}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{q}_{3} \cdot \vec{\sigma}_{1} \vec{q}_{1} \cdot \vec{\sigma}_{2}$	$\tilde{\mathcal{G}}_{13}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{12} \cdot \vec{\sigma}_{1} \hat{r}_{23} \cdot \vec{\sigma}_{2}$
$\mathcal{G}_{14}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{q}_{3} \cdot \vec{\sigma}_{1} \vec{q}_{3} \cdot \vec{\sigma}_{2}$	$\tilde{\mathcal{G}}_{14}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{12} \cdot \vec{\sigma}_{1} \hat{r}_{12} \cdot \vec{\sigma}_{2}$
$\mathcal{G}_{15}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \vec{q}_{2} \cdot \vec{\sigma}_{1} \vec{q}_{2} \cdot \vec{\sigma}_{3}$	$\tilde{\mathcal{G}}_{15}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \hat{r}_{13} \cdot \vec{\sigma}_{1} \hat{r}_{13} \cdot \vec{\sigma}_{3}$
$\mathcal{G}_{16}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \vec{q}_{3} \cdot \vec{\sigma}_{2} \vec{q}_{3} \cdot \vec{\sigma}_{3}$	$\tilde{\mathcal{G}}_{16}=\boldsymbol{\tau}_{2} \cdot \boldsymbol{\tau}_{3} \hat{r}_{12} \cdot \vec{\sigma}_{2} \hat{r}_{12} \cdot \vec{\sigma}_{3}$
$\mathcal{G}_{17}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \vec{q}_{1} \cdot \vec{\sigma}_{1} \vec{q}_{3} \cdot \vec{\sigma}_{3}$	$\tilde{\mathcal{G}}_{17}=\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{3} \hat{r}_{23} \cdot \vec{\sigma}_{1} \hat{r}_{12} \cdot \vec{\sigma}_{3}$
$\mathcal{G}_{20}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{3} \cdot \vec{q}_{3} \vec{\sigma}_{2} \cdot\left(\vec{q}_{1} \times \vec{q}_{3}\right)$	$\tilde{\mathcal{G}}_{20}=\boldsymbol{\tau}_{1} \cdot\left(\boldsymbol{\tau}_{2} \times \boldsymbol{\tau}_{3}\right) \vec{\sigma}_{1} \cdot \hat{r}_{23} \vec{\sigma}_{3} \cdot \hat{r}_{12} \vec{\sigma}_{2} \cdot\left(\hat{r}_{12} \times \hat{r}_{23}\right)$

$\phi+\phi$
$\phi=t+\phi+\phi+\phi$
$+b s+b+d x+d$
$+b_{5}+6+6+$

> (a)
> $\therefore \quad 1+\phi+\phi$

$$
\begin{aligned}
& \text { (b) } \\
& \text { (a) }
\end{aligned}
$$

(c)

Entem, Kaiser, Machleidt, Nosyk, PRC 91, 014002 (2015)

N4LO 2NF
 Contributions

Class X

Class XI

Class XII

Class XIII

Class XIV

R. Machleidt

N5LO 2NF Contributions

Entem, Kaiser, Machleidt, Nosyk, PRC 92, 064001 (2015)

(b)

(c)

(a)

Class XIIb

(b)

From Entem, Kaiser, Machleidt, Nosyk, PRC 91, 014002 (2015)

From Entem, Kaiser, Machleidt, Nosyk, PRC 92, 064001 (2015)

2N Force
3N Force
4N Force
5N Force
LO $\left(Q / \Lambda_{\chi}\right)^{0}$

NLO $\left(Q / \Lambda_{\chi}\right)^{2}$

NNLO
$\left(Q / \Lambda_{\chi}\right)^{3}$

$\mathrm{N}^{4} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{5}$
$\mathbf{N}^{5} \mathbf{L O}$
$\left(Q / \Lambda_{\chi}\right)^{6}$

NN pots up to N4LO

TRIUMF, 02/28/2017

Status A.D. 2017

NOW THAT WE HEVE CHARTERED THE WATERS OF THE FORCES, HOW DO WE ADDRESS THE ISSUES?

3N Force And that first and above all requires High-quality NN potentials, Constructed consistently

$$
\begin{aligned}
& \text { NNLO } \\
& \left(Q / \Lambda_{\chi}\right)^{3} \\
& \\
& \mathbf{N}^{3} \mathbf{L O} \\
& \left(Q / \Lambda_{\chi}\right)^{4}
\end{aligned}
$$

4N Force
5N Force

$$
\begin{aligned}
& \mathbf{N L O} \\
& \left(Q / \Lambda_{\chi}\right)^{2}
\end{aligned}
$$ through all orders.

$\mathbf{N}^{5} \mathrm{LO}$
$\left(Q / \Lambda_{\chi}\right)^{6}$

NN pots up to N4LO
TRIUMF, 02/28/2017

R. Machleidt

"HICH QUALITY","CONSISTENTLY", .. WHAT DOES THAT MEAN?

- Use $\pi-N$ LECs determined in $\pi-N$ analysis with the highest possible precision: Roy-Steiner Analysis (Hoferichter et al., PRL 115, 192301 (2015)).

Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory

Martin Hoferichter, ${ }^{1+3}$ Jacobo Ruiz de Elvira, ${ }^{*}$ Bastian Kubis, ${ }^{4}$ and Ulf-G. Meißner ${ }^{4,5}$
Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
${ }^{2}$ ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
${ }^{3}$ Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA
${ }^{4}$ Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
${ }^{5}$ Institut für Kernphysik, Institute for Advanced Simulation, Jülich Center for Hadron Physics, JARA-HPC, and JARA-FAME, Forschungszentrum Jülich, D-52425 Jülich, Germany
(Received 28 July 2015; published 4 November 2015)

We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the $\Delta(1232)$ resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

*

2015 Klaus Erkelenz Prize Winners (University of Bonn, Germany)

Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory
Martin Hoferichter, ${ }^{1,2,3}$ Jacobo Ruiz de Elvira, ${ }^{4}$ Bastian Kubis, ${ }^{4}$ and Ulf-G. Meißner ${ }^{4,5}$

MAIN CHARACTERISTICS:

- Set of coupled partial-wave dispersion relations constraint by analyticity, unitarity, and crossing symmetry.
- Additional crucial constraint: High-accuracy $\pi-N$ scattering lengths extracted from pionic atoms.
- Matching to $\pi-N$ LECs done in the subthreshold region, which is best for nuclear forces.
- Comprehensive error analysis.
- Small errors.

$\pi-N$ LECs from Roy-Steiner Analysis

(Hoferichter et al., PRL l15, 192301 (2015))
TABLE II: The πN LECs as determined in the Roy-Steiner-equation analysis of πN scattering conducted in Ref. [35]. The given orders of the chiral expansion refer to the $N N$ system. Note that the orders, at which the LECs are extracted from the πN system, are always lower by one order as compared of the $N N$ system in which the LECs are applied. The c_{i}, \bar{d}_{i}, and \bar{e}_{i} are the LECs of the second, third, and fourth order πN Lagrangian [26] and are in units of $\mathrm{GeV}^{-1}, \mathrm{GeV}^{-2}$, and GeV^{-3},

Very small errors!

RECALL A TYPICAL PROBLEM FROM THE PAST

- One had to assume that, e.g., $\mathrm{c}_{3} \cong 3.4-6.0$
- Leading to a huge uncertainty for the 3NF contribution.
- Inconsistency with C_{3} used in the NN interaction.
- This is all over now!
- Uncertainty of the NN interaction due to the uncertainty in c_{i} 's absolutely negligible.
- Uncertainty of the 3NF contribution due to the uncertainty in c_{i} 's : negligible as compared to truncation error.

"HICH QUALITY","CONSISTENTLY", ... WHAT DOES THAT MEANS?

- Use $\pi-N$ LECs determined in $\pi-N$ analysis with the highest possible precision: Roy-Steiner Analysis (Hoferichter et al., PRL 115, 192301 (2015)).
- NN potentials are fit to NN data (and not to phase shifts) using all NN data below pion production threshold published up to December 2016.

Reproduction of the NN Data

TABLE V: $\chi^{2} /$ datum for the fit of the 2016 NN data base $y N N$ potentials at various orders of chiral EFT $(\Lambda=500 \mathrm{MeV}$
in all cases).

Neutron-Proton Phase Shifts

Cutoff Variations

NNLO

N4LO

The Potentials are non-local and soft

TABLE VII: Two- and three-nucleon bound-state properties as predicted by $N N$ potentials at various orders of chiral EFT ($\Lambda=500 \mathrm{MeV}$ in all cases). (Deuteron: Binding energy B_{d}, asymptotic S state A_{S}, asymptotic D / S state η, structure radius $r_{\text {str }}$, quadrupole moment Q, D-state probability P_{D}; the predicted $r_{\text {str }}$ and Q are without meson-exchange current contributions and relativistic corrections. Triton: Binding energy B_{t}) B_{d} is fitted, all other quantities are predictions.

	LO	NLO	NNLO	$\mathrm{N}^{3} \mathrm{LO}$	$\mathrm{N}^{4} \mathrm{LO}$	Empirical ${ }^{a}$
Deuteron						
$B_{d}(\mathrm{MeV})$	2.224575	2.224575	2.224575	2.224575	2.224575	2.224575 (9)
$A_{S}\left(\mathrm{fm}^{-1 / 2}\right)$	0.8526	0.8828	0.8844	0.8853	0.8852	0.8846(9)
η	0.0302	0.0262	0.0257	0.0257	0.0258	0.0256(4)
$r_{\text {str }}(\mathrm{fm})$	1.911	1.971	1.968	1.970	1.973	$1.97507(78)$
$P_{D}(\%)$	7.29	3.40	4.49	4.15	4.10	-
Triton $B_{t}(\mathrm{MeV})$	11.02	8.31	8.21	8.09	8.08	8.48

CONCLUSIONS

- Concerning the $a b$ initio explanation of intermediate and heavy nuclei we are faced with tough issues.
- But, let's not (yet) give up on the systematic use of chiral EFT.
- This requires order-by-order calculations up to N4LO using consistent 2 NF and 3NF (and 4NF).
- For this purpose, we have constructed a family of NN potentials that keeps the error budget as low as possible (essentially no uncertainties in the $\pi-N$ LECs).
- The NN potentials are relatively soft and require less 3NF as compared to some other chiral NN potentials that are floating around.
- Systematic calculations with different families of chiral interactions may hopefully give us clues for how to solve the remaining problems.

```
STABTRIMONE
```


