

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Improved nuclear structure corrections for spectroscopy of muonic atoms

Nir Nevo Dinur¹ Chen Ji², Javier Hernandez^{1,3} Sonia Bacca^{1,4}, Nir Barnea⁵

¹TRIUMF, ²ECT* and INFN-TIFPA, ³University of British Columbia, ⁴University of Manitoba, ⁵The Hebrew University of Jerusalem

Progress in Ab Initio Techniques in Nuclear Physics — Feb. 28 2017

Nir Nevo Dinur (TRIUMF)

Improved nuclear structure corrections for spectroscopy

How big is the proton?

R. Pohl & J. Krauth @ CREMA

Nir Nevo Dinur (TRIUMF) Impr

How big is the deuteron?

R. Pohl et al., Science 2016

How big is the deuteron?

R. Pohl *et al.*, Science 2016 See Javier Hernandez's talk at the next session

Nir Nevo Dinur (TRIUMF)

The proton radius puzzle

Nir Nevo Dinur (TRIUMF)

Improved nuclear structure corrections for spectroscopy

CREMA @ PSI

Extract precise charge radii R_c from Lamb shift (LS) in:

- µH (published 2010,2013: proton radius puzzle)
- µD (published 2016: deuteron radius puzzle)
- μ^{4} He⁺ (measured 2014, finalizing: agreement with e^{-4} He ?!)
- μ^{3} He⁺ (measured 2014, analyzing: ???)
 - \implies radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^{3} H, μ^{6} He⁺, $\mu^{6,7}$ Li⁺² ... (possible?)

CREMA @ PSI

Extract precise charge radii R_c from Lamb shift (LS) in:

- µH (published 2010,2013: proton radius puzzle)
- µD (published 2016: deuteron radius puzzle)
- μ^{4} He⁺ (measured 2014, finalizing: agreement with e^{-4} He ?!)
- μ^{3} He⁺ (measured 2014, analyzing: ???)
 - \implies radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^{3} H, μ^{6} He⁺, $\mu^{6,7}$ Li⁺² ... (possible?)

Extract magnetic radii R_m from Hyper-fine splitting (HFS) in:

• μ H & μ ³He⁺ (approved)

CREMA @ PSI

Extract precise charge radii R_c from Lamb shift (LS) in:

- µH (published 2010,2013: proton radius puzzle)
- µD (published 2016: deuteron radius puzzle)
- μ^{4} He⁺ (measured 2014, finalizing: agreement with e^{-4} He ?!)
- μ^{3} He⁺ (measured 2014, analyzing: ???)
 - \implies radius puzzle(s), QED tests, He isotope shift, nuclear *ab initio*, ...
- μ^{3} H, μ^{6} He⁺, $\mu^{6,7}$ Li⁺² ... (possible?)

Extract magnetic radii R_m from Hyper-fine splitting (HFS) in:

• μ H & μ ³He⁺ (approved)

FAMU @ RIKEN-RAL / J-PARC

• HFS in μ H in two new methods (planned)

Precise R_c/R_m from $\mu A LS/HFS$

Require accurate theoretical inputs from QED, hadron and nuclear physics

- QED corrections:
 - vacuum polarization
 - lepton self energy
 - relativistic recoil effects
- Theory of μ-p, D, ^{3,4}He⁺ reexamined Martynenko *et al.* '07, Borie '12, Krutov *et al.* '15 Karshenboim *et al.* '15, Krauth *et al.* '15 ...

- Nuclear finite-size corrections (elastic):
 - leading term (OPE): $\delta_{size} = \frac{m_r^3}{12} (Z\alpha)^4 \times R_c^2$
 - Zemach/Friar term (TPE): $\delta_{
 m Zem} = -rac{m_r^4}{24} (Zlpha)^5 imes \langle r^3
 angle_{(2)} ~\propto R_c^3$
 - can be calculated from g.s. charge distribution, Friar '**79**, Borie '**12**('**14**), Krutov *et al.* '**15**
 - extracted from experimental form factors, Sick '14
 - or avoided due to cancellations with $\delta_{\rm pol}$ Pachucki '11 & Friar '13 $(\mu {\rm D})$

- Nuclear polarization corrections (inelastic TPE):
 - least well-known
 - related to nuclear response functions: $S_O(\omega) = \oint |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$
 - can be calculated (continuum few-body problem)
 - or extracted from data (very imprecise)

 $\Delta E_{2S-2P} = \delta_{QED} + \delta_{size} \left(R_c \right) + \delta_{Zem} + \delta_{pol}$

- Nuclear polarization corrections (inelastic TPE):
 - least well-known

 - can be calculated (continuum few-body problem)
 - or extracted from data (very imprecise)
 - sometimes rewritten as:

 $\delta_{\rm TPE} \equiv \delta_{\rm Zem} + \delta_{\rm pol}$

The accuracy of R_c is limited by δ_{TPE}

Example — μ D:

$$\begin{aligned} \Delta E_{\rm QED}^{\rm LS} &= 228.77356(75) \, \mathrm{meV} \\ \Delta E_{\rm rad.-dep.}^{\rm LS} &= -6.11025(28) \, r_{\rm d}^2 \, \mathrm{meV/fm^2} + 0.00300(60) \, \mathrm{meV} \\ \Delta E_{\rm TPE}^{\rm LS} &= 1.70910(2000) \, \mathrm{meV} \end{aligned}$$

J. Krauth et al. (CREMA), Ann. Phys. (2016); R. Pohl et al. (CREMA), Science 2016

Status — prior to $\mu^{3,4}$ He⁺ measurements:

- Uncertainty in $\delta_{\rm pol}$: ~ 20%
- Required: $\sim 5\%$

(to determine R_c with $\sim 10^{-4}$ accuracy)

We have performed the first *ab-initio* calculation of $\delta_{
m Zem}$ and $\delta_{
m pol}$ for A=3,4

we used state-of-the-art nuclear forces

- AV18+UIX
- χ EFT: N3LO (Entem & Machleidt) + N2LO (Navrátil)
- \implies estimate nuclear physics uncertainty

we employ established few-body methods

- EIHH: Effective interaction Hyperspherical Harmonics (bound method)
- LIT: Lorentz Integral Transform (continuum method)
- LSR: A new method based on the Lanczos algorithm NND et al., Phys. Rev. C (2014)

We have performed the first *ab-initio* calculation of $\delta_{ m Zem}$ and $\delta_{ m pol}$ for A=3,4

we used state-of-the-art nuclear forces (at the time...)

- AV18+UIX
- χ EFT: N3LO (Entem & Machleidt) + N2LO (Navrátil)

 \implies estimate nuclear physics uncertainty

we employ established few-body methods

- EIHH: Effective interaction Hyperspherical Harmonics (bound method)
- LIT: Lorentz Integral Transform (continuum method)
- LSR: A new method based on the Lanczos algorithm NND et al., Phys. Rev. C (2014)

• Hamiltonian for muonic atoms

 $H = H_{nucl} + H_{\mu} + \Delta H$ $H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$

• Corrections to the point Coulomb from protons

$$\Delta H = \alpha \sum_{i}^{Z} \left(\frac{1}{r} - \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_i|} \right)$$

• Evaluate inelastic effects of ΔH on muonic spectrum in 2nd-order perturbation theory

$$\delta_{\rm pol} = \sum_{N \neq N_0, \mu} \langle N_0 \mu_0 | \Delta H | N \mu \rangle \frac{1}{E_{N_0} - E_N + \epsilon_{\mu_0} - \epsilon_{\mu}} \langle N \mu | \Delta H | \mu_0 N_0 \rangle$$

 $|\mu_0\rangle$: muon wave function for 2S/2P state

Nir Nevo Dinur (TRIUMF)

Systematic contributions to nuclear polarization

δ_{NR} Non-Relativistic limit

$\delta_L + \delta_T$ Longitudinal and Transverse relativistic corrections

δ_C **Coulomb** distortions

δ_{NS} Corrections from finite Nucleon Size

• Neglect Coulomb interactions in the intermediate state

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of

 $\eta \equiv \sqrt{2m_r\omega} |\boldsymbol{R} - \boldsymbol{R}'|$

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of $\eta \equiv \sqrt{2m_r\omega}|{m R}-{m R}'|$

- $|{m R}-{m R}'|$ \Longrightarrow "virtual" distance the proton travels in 2γ exchange
- uncertainty principal $|{m R}-{m R}'|\sim 1/\sqrt{2m_N\omega}$

• $\eta \sim \sqrt{\frac{m_r}{m_N}} \approx 0.3$

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers of $\eta \equiv \sqrt{2m_r\omega}|{m R}-{m R}'|$

- $|{m R}-{m R}'|$ \Longrightarrow "virtual" distance the proton travels in 2γ exchange
- uncertainty principal $|{m R}-{m R}'|\sim 1/\sqrt{2m_N\omega}$

• $\eta \sim \sqrt{\frac{m_r}{m_N}} \approx 0.3$

$$P_{NR}(\omega, \mathbf{R}, \mathbf{R}') \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$
$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \sim \eta^2 + \eta^3 + \eta^4$$

- $\delta_{NR} = \boldsymbol{\delta_{NR}^{(0)}} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$
- $\delta^{(0)}_{NR} \propto \eta^2$

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

- $S_{D_1}(\omega) \Longrightarrow$ electric dipole response function [$\hat{D}_1 = R \, Y_1(\hat{R})$]
- $\delta_{D1}^{(0)}$ is the dominant contribution to $\delta_{
 m pol}$
- ullet \Longrightarrow Rel. and Coulomb corrections added at this order

$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$$

• $\delta_{NR}^{(1)} \propto \eta^3$

$$\delta_{NR}^{(1)} = \delta_{R3pp}^{(1)} + \delta_{Z3}^{(1)}$$

$$\begin{split} \delta^{(1)}_{R3pp} &= -\frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \langle N_0 | \hat{\rho}^{\dagger}(\mathbf{R}) \hat{\rho}(\mathbf{R}') | N_0 \rangle \\ \delta^{(1)}_{Z3} &= \frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \rho_0(\mathbf{R}) \rho_0(\mathbf{R}') \end{split}$$

• $\delta^{(1)}_{R3pp} \Rightarrow$ 3rd-order proton-proton correlation

•
$$\delta^{(1)}_{Z3} \Longrightarrow$$
 3rd Zemach moment

$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$$

• $\delta_{NR}^{(1)} \propto \eta^3$

$$\delta_{NR}^{(1)} = \delta_{R3pp}^{(1)} + \delta_{Z3}^{(1)}$$

$$\delta_{R3pp}^{(1)} = -\frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \langle N_0 | \hat{\rho}^{\dagger}(\mathbf{R}) \hat{\rho}(\mathbf{R}') | N_0 \rangle$$

$$\delta_{Z3}^{(1)} = \frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \rho_0(\mathbf{R}) \rho_0(\mathbf{R}') = \frac{m_r^4}{24} (Z\alpha)^5 \langle \mathbf{r}^3 \rangle_{(2)}$$

• $\delta^{(1)}_{R3pp} \Rightarrow$ 3rd-order proton-proton correlation

• $\delta_{Z3}^{(1)} \implies$ 3rd Zemach moment cancels *elastic* Zemach moment of finite-size corrections c.f. Pachucki '11 & Friar '13 (μ D) $\implies \delta_{TPE} \equiv |\delta_{Zem} + \delta_{pol}|$

NND et al., Phys. Lett. B (2016)

Improved nuclear structure corrections for spectroscopy

Nir Nevo Dinur (TRIUMF)

$\mu^{3}\text{He}^{+}$ $\mu^{3}\text{H}$						
Error type	$\delta^A_{ m pol}$	$\delta^A_{\rm Zem}$	δ^A_{TPE}	$\delta^A_{ m pol}$	$\delta^A_{\rm Zem}$	δ^A_{TPE}
Numerical	0.4	0.1	0.1	0.1	0.0	0.1
Nuclear model	1.5	1.8	1.7	2.2	2.3	2.2
ISB	2.0	0.2	0.5	0.9	0.2	0.6
Nucleon size	1.6	1.5	0.6	0.6	1.3	0.0
Relativistic	0.6	-	1.5	1.4	-	0.3
Coulomb	1.2	-	0.3	0.3	-	0.2
Multipole expansion	2.0	-	0.6	2.0	-	1.4
Higher $Z\alpha$	1.5	-	0.4	0.7	-	0.5
Magnetic MEC	0.4	-	0.1	0.3	-	0.2
Total	4.1%	2.3%	2.5%	3.6%	2.7%	2.7%

Nir Nevo Dinur (TRIUMF)

Improved nuclear structure corrections for spectroscopy

PHYSICAL REVIEW A 95, 012506 (2017)

Two-photon exchange correction to 2*S*-2*P* splitting in muonic ³He ions

Carl E. Carlson*

Physics Department, College of William and Mary, Williamsburg, Virginia 23187, USA

Mikhail Gorchtein[†] and Marc Vanderhaeghen Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, Mainz, Germany (Received 2 December 2016; published 27 January 2017)

We calculate the two-photon exchange correction to the Lamb shift in muonic 3 He ions within the dispersion relations framework. Part of the effort entailed making analytic fits to the electron- 3 He quasielastic scattering data set, for purposes of doing the dispersion integrals. Our result is that the energy of the 2*S* state is shifted downwards by two-photon exchange effects by 15.14(49) meV, in good accord with the result obtained from a potential model and effective field theory calculation.

TABLE I. Individual contributions to ΔE_{2S} from two-photon exchange in μ -³He, in units of meV.

Contribution	This work	Refs. [21,22]		
Elastic	-10.93(27)	-10.49(24)		
δ^N_{Zem}		-0.52(3)		
Inelastic	-5.81(40)	-4.45(21)		
Nuclear	-5.50(40)	-4.17(17)		
Nucleon	-0.31(2)	-0.28(12)		
Subtraction	1.60(12)			
Nuclear	1.39(12)			
Nucleon	0.21(3)			
Total TPE	-15.14(49)	-15.46(39)		

System	Our Ref.	Unc.	Experimental Status
$\mu^{2}{ m H}$	Phys. Lett. B '14	1% ightarrow 1.3%	published <i>Science</i> '16
$\mu{}^4 extsf{He}^+$	Phys. Rev. Lett. '13	20% ightarrow 6%	measured, unpublished
$\mu{}^{3}{ m He^{+}}$	\int Phys Lett B '16	$20\% \to 4\%$	measured, unpublished
$\mu^{3}{ m H}$	$\int 1 \text{ Hys. Lett. D} 10$	4%	measurable?

- Our results agree with other values and are more accurate
- \Rightarrow Unc. comparable with $\sim 5\%$ experimental needs
- \Rightarrow Will improve precision of R_c from Lamb shifts
- \Rightarrow May help shed light on the "proton (deuteron) radius puzzle"

The work is not completed yet ...

	$\mu^{3}\text{He}^{+}$			$\mu^{3}H$		
Error type	$\delta^A_{ m pol}$	$\delta^A_{\rm Zem}$	$\delta^{A}_{\mathrm{TPE}}$	$\delta^A_{ m pol}$	δ^A_{Zem}	δ^A_{TPE}
Numerical	0.4	0.1	0.1	0.1	0.0	0.1
Nuclear model	1.5	1.8	1.7	2.2	2.3	2.2
ISB	2.0	0.2	0.5	0.9	0.2	0.6
Nucleon size	1.6	1.5	0.6	0.6	1.3	0.0
Relativistic	0.6	-	1.5	1.4	-	0.3
Coulomb	1.2	-	0.3	0.3	-	0.2
Multipole expansion	2.0	-	0.6	2.0	-	1.4
Higher $Z\alpha$	1.5	-	0.4	0.7	-	0.5
Magnetic MEC	0.4	-	0.1	0.3	-	0.2
Total	4.1%	2.3%	2.5%	3.6%	2.7%	2.7%

Improved nuclear structure corrections for spectroscopy

1. Replace point-nucleon limit

$$\Delta H = \frac{Z\alpha}{r} - \alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_i|}$$

1. Replace point-nucleon limit with a convolution of nucleon charge densities

$$\Delta H = \frac{Z\alpha}{r} - \alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|} \Longrightarrow \frac{Z\alpha}{r} - \alpha \sum_{i}^{A} \int d\boldsymbol{R}' \, \frac{n_{i}(\boldsymbol{R}' - \boldsymbol{R}_{i})}{|\boldsymbol{r} - \boldsymbol{R}'|}$$

2. Fourier transform to their electric form-factors in the low- q^2 approximation

$$G_{p/n}^E(q^2) \simeq G_{p/n}^E(0) - \frac{\langle r_{\rm ch}^2 \rangle_{p/n}}{6} q^2$$

1. Replace point-nucleon limit with a convolution of nucleon charge densities

$$\Delta H = \frac{Z\alpha}{r} - \alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|} \Longrightarrow \frac{Z\alpha}{r} - \alpha \sum_{i}^{A} \int d\boldsymbol{R}' \, \frac{n_{i}(\boldsymbol{R}' - \boldsymbol{R}_{i})}{|\boldsymbol{r} - \boldsymbol{R}'|}$$

2. Fourier transform to their electric form-factors in the low- q^2 approximation

$$G_{p/n}^E(q^2) \simeq G_{p/n}^E(0) - \frac{\langle r_{\rm ch}^2 \rangle_{p/n}}{6} q^2$$

3. Then substitute

$$q^2 \rightarrow \nabla_R^2$$

• In momentum-space

$$\langle r^3 \rangle_{(2)} = \frac{48}{\pi} \int_0^\infty \frac{dq}{q^4} \left[F_E^2(q^2) - 1 + \frac{(qR)^2}{3} \right]$$

• In coordinate-space

$$\langle r^3 \rangle_{(2)} = \iint d\mathbf{R} d\mathbf{R}' \rho_0(\mathbf{R}) \rho_0(\mathbf{R}') |\mathbf{R} - \mathbf{R}'|^3$$

• In momentum-space

$$\langle r^3 \rangle_{(2)} = \frac{48}{\pi} \int_0^\infty \frac{dq}{q^4} \left[F_E^2(q^2) - 1 + \frac{(qR)^2}{3} \right]$$

• In coordinate-space (Hybrid method)

$$\langle r^{3} \rangle_{(2)} = \iint d\mathbf{R} d\mathbf{R}' \rho_{0}(\mathbf{R}) \rho_{0}(\mathbf{R}') |\mathbf{R} - \mathbf{R}'|^{3} = \frac{2}{\pi} \int dq \ q \ F_{E}^{2}(q^{2}) \int dRsin(qR) |R|^{4}$$

where in practice

$$ho_0(\boldsymbol{R}) =
ho_{
m ch}^{
m point}(\boldsymbol{R}) = \int rac{d\boldsymbol{q}}{2\pi^3} e^{i \boldsymbol{q} \cdot \boldsymbol{R}} F_E^{
m point}(q^2)$$

• In momentum-space

$$\langle r^3 \rangle_{(2)} = \frac{48}{\pi} \int_0^\infty \frac{dq}{q^4} \left[F_E^2(q^2) - 1 + \frac{(qR)^2}{3} \right]$$

• In coordinate-space (Hybrid method)

$$\langle r^{3} \rangle_{(2)} = \iint d\mathbf{R} d\mathbf{R}' \rho_{0}(\mathbf{R}) \rho_{0}(\mathbf{R}') |\mathbf{R} - \mathbf{R}'|^{3} = \frac{2}{\pi} \int dq \ q \ F_{E}^{2}(q^{2}) \int dRsin(qR) |R|^{4}$$

where in practice

$$\rho_0(\boldsymbol{R}) = \rho_{\rm ch}^{\rm point}(\boldsymbol{R}) = \int \frac{d\boldsymbol{q}}{2\pi^3} e^{i\boldsymbol{q}\cdot\boldsymbol{R}} F_E^{\rm point}(q^2) \text{ but } F_E^{\rm full}(q^2) = \frac{1}{Z} \sum_{i=p,n} F_i^{point}(q^2) \cdot G_i^E(q^2)$$

Using AV18+UIX Nuclear interaction and Kelly parameterization for the nucleon form-factors: (brackets show only uncertainties due to the method and K_{max} convergence)

Nucleons	Method	³ He	³ H
$Low-q^2$	momentum	-	-
$\operatorname{Low-} q^2$	coordinate	27.18(5)	18.86(0)
Full	momentum	27.58(15)	19.27(9)
Full	coordinate	27.65(5)	19.30(0)
Exp. [Sick '14]	SOG	28.15(70)	-

Using AV18+UIX Nuclear interaction and Kelly parameterization for the nucleon form-factors: (Calculations in non-rel. impulse approximation, i.e., w/o MECs, Darwin-Foldy, etc. Values in fm^n)

Ab-initio Method	Algorithm	$R_{ m ch}$	$\langle R^3 \rangle_{(2)}$	$\langle R^4 \rangle$
GFMC	mom.	1.954(3)	27.90(20)	35.1(4)
HH-momentum	mom.	1.953(1)	27.56(20)	32.5(1.3)
EIHH (coor.)	mom.	1.953(7)	27.58(15)	33.8(5)
	coor.	1.953(3)	27.65(05)	34.1(2)
Exp. [Sick '14]	SOG	1.973(14)	28.15(70)	32.9(1.60)

In collaboration with Saori Pastore, Maria Piarulli, and Bob Wiringa

Nir Nevo Dinur (TRIUMF)

Improved nuclear structure corrections for spectroscopy

- 1. Can we improve the multipole (η) expansion of δ_{pol} ?
- 2. Can we improve the nucleon-size treatment of $\delta_{\rm pol}?$

- 1. Can we improve the multipole (η) expansion of δ_{pol} ?
- 2. Can we improve the nucleon-size treatment of $\delta_{\rm pol}?$

• Answer(s):

Yes!

- 1. There is an alternative (η -less) derivation which leads to a new multipole expansion.
- 2. This derivation allows including the full form-factors.

Non-Rel. point-nucleon case

$$\begin{split} \delta_{\text{pol}} &= c_0 \sum_{\ell} \int dq I_{\ell}(q) \qquad \text{(integrated numerically)} \\ I_{\ell}(q) &= \int d\omega \frac{R_{\ell}(q,\omega)}{q^2(q^2 + 2m_r\omega)} \\ R_{\ell}(q,\omega) &= \sum_{N \neq N_0} \left| \langle N_0 || \hat{J}_{\ell}(q\mathbf{R}) || N \rangle \right| \delta(\omega - \omega_N) \\ \hat{J}_{\ell}(q\mathbf{R}) &= \sum_{i}^{Z} j_{\ell}(qR) Y_{\ell}(\hat{R}) \end{split}$$

Including nucleon form-factors

$$\begin{split} R_\ell &\Longrightarrow \sum_i R^i_\ell \cdot G^E_i \\ \hat{J}_\ell &\Longrightarrow \sum_i \hat{J}^i_\ell \\ i &= p/n \end{split}$$

Nir Nevo Dinur (TRIUMF)

Improved nuclear structure corrections for spectroscopy

 $\delta_\ell \ (\mu \mathsf{D})$

Nir Nevo Dinur (TRIUMF)

Improved nuclear structure corrections for spectroscopy

Nir Nevo Dinur (TRIUMF)

Improved nuclear structure corrections for spectroscopy

Nir Nevo Dinur (TRIUMF)

Improved nuclear structure corrections for spectroscopy

- We will continue to improve the nuclear corrections, which are the bottleneck for LS measured in $\mu A,\, 2\leqslant A\leqslant 4$ by
 - $\bullet\,$ Improving the treatment of nucleon-sizes in $\delta_{\rm Zem}$ and $\delta_{\rm pol}$
 - Using the $\eta\text{-less}$ multipole expansion
 - Including ISB, MECs, etc.
- and in the future
 - Quantify & reduce nuclear uncertainty See Javier Hernandez's talk at the next session for ${\cal A}=2$
 - Use novel nuclear potentials
 - Extend to LS in $A \geqslant 6,$ HFS in A=3, \ldots

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Thank you! Merci!