Factorization and Universality in Nuclear Physics

Nir Barnea The Racah institute for Physics The Hebrew University, Jerusalem, Israel

Ab Initio Techniques in Nuclear Physics 28/2/2017-3/3/2017, TRIUMF

The Team

Ronen Weiss, Betzalel Bazak

Wine tasting, new year's eve Tzora (2014).

Short Range Correlations in a many-body system

Heavy Fermions

The Mara river, Kenya (2016).

Short Range Correlations in a many-body system

Heavy Fermions

The Mara river, Kenya (2016).

The short range wave function

Universality

We start with 2-body Schrodinger ...

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(\mathbf{r})\right]\psi = E\psi$$

Vanishing distance, $r \longrightarrow 0$

- The energy becomes negligible $E \ll \hbar^2 / mr^2$
- The w.f. ψ assumes an asymptotic energy independent form φ

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(r)\right]\varphi(\mathbf{r}) = 0$$

$$r\varphi(r) = 0|_{r=0}$$

• φ is a universal function (in a limited sense)

The short range wave function

Factorization

The 2-body system

 $\psi(\mathbf{r}) \longrightarrow \varphi(\mathbf{r})$

The A-body system

 $\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_A)\longrightarrow \varphi(\mathbf{r}_{12})A(\mathbf{R}_{12},\mathbf{r}_3,\ldots,\mathbf{r}_A)$

Nir Barnea (HUJI)

Factorization and Universality 5 / 33

Recommended reading

Theoretical developments in nuclear physics

Levinger - Photoabsorption
J. S. Levinger, Phys. Rev. 84, 43 (1951).
Q Amado, Woloshyn - Momentum Distribution
R. D. Amado, Phys. Rev. C 14, 1264 (1976).
R. D. Amado and R. M. Woloshyn, Phys. Lett. B 62, 253 (1976).
Oiofi degli Atti - Electron scattering
C. Ciofi degli Atti, Phys. Rep. 590, 1 (2015).
O Bogner, Roscher - Factorization
S. K. Bogner and D. Roscher, Phys. Rev. C 86 , 064304, (2012).
8

A system of spin up - spin down fermions

Tan relations connects the contact *C* with:

Q Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow rac{C}{k^4}$$

O The energy relation

$$T + U = \sum_{\sigma} \int \frac{dk}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(k) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi ma} C$$

Adiabatic relation

A system of spin up - spin down fermions

Tan relations connects the contact *C* with:

Q Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(k) \longrightarrow rac{C}{k^4}$$

Output Description
Output Description

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi m a} C$$

Adiabatic relation

$$\frac{dE}{d1/a} = -\frac{\hbar^2}{4\pi m}C$$

A system of spin up - spin down fermions

Tan relations connects the contact *C* with:

Q Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow rac{C}{k^4}$$

Output Description
Output Description

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi m a} C$$

$$\frac{dE}{d1/a} = -\frac{\hbar^2}{4\pi m}C$$

A system of spin up - spin down fermions

Tan relations connects the contact *C* with:

) Tail of momentum distribution $|a|^{-1} \ll k \ll r_0^{-1}$

$$n_{\sigma}(\mathbf{k}) \longrightarrow rac{C}{k^4}$$

Output Description
Output Description

$$T + U = \sum_{\sigma} \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(\mathbf{k}) - \frac{C}{k^4} \right) + \frac{\hbar^2}{4\pi m a} C$$

$$\frac{dE}{d1/a} = -\frac{\hbar^2}{4\pi m}C$$

Q ...

The Contact - Experimental Results

Verification of Universal Relations in a Strongly Interacting Fermi Gas J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys. Rev. Lett. 104, 235301 (2010)

The short range factorization

[Tan, Braatan & Platter, Werner & Castin,...]

• The interaction is represented through the boundary condition

$$\left[\partial \log r_{ij} \Psi / \partial r_{ij}\right]_{r_{ij}=0} = -1/a$$

• Thus, when two particles approach each other

$$\Psi \xrightarrow[r_{ij} \to 0]{} (1/r_{ij} - 1/a) A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

• The contact *C* represents the probability of finding an interacting pair within the system

$$C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle$$

Where

$$\langle A_{ij}|A_{ij}\rangle = \int \prod_{k\neq i,j} d\mathbf{r}_k d\mathbf{R}_{ij} A_{ij}^{\dagger} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right) \cdot A_{ij} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right)$$

The short range factorization

[Tan, Braatan & Platter, Werner & Castin,...]

• The interaction is represented through the boundary condition

$$\left[\partial \log r_{ij} \Psi / \partial r_{ij}\right]_{r_{ij}=0} = -1/a$$

• Thus, when two particles approach each other

$$\Psi \xrightarrow[r_{ij} \to 0]{} (1/r_{ij} - 1/a) A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

• The contact *C* represents the probability of finding an interacting pair within the system

$$C \equiv 16\pi^2 \sum_{ij} \langle A_{ij} | A_{ij} \rangle$$

Where

$$\langle A_{ij}|A_{ij}\rangle = \int \prod_{k\neq i,j} d\mathbf{r}_k \, d\mathbf{R}_{ij} \, A^{\dagger}_{ij} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right) \cdot A_{ij} \left(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j}\right)$$

Nuclear Scales

- The pion mass $\mu_{\pi}^{-1} = \hbar/m_{\pi}c \approx 1.4 \text{ fm}$
- Scattering lengths $a_t = 5.4 \text{ fm}$, $a_s \approx 20 \text{ fm}$, thus $\mu_\pi |a| \geq 3.8$
- The nuclear radius is $R \approx 1.2 A^{1/3}$ fm
- Interparticle distance $d \approx 2.4$ fm, thus $\mu_{\pi} d \approx 1.7$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics
- The interaction range is significant
- There could be different interaction channels not only s-wave
- Therefore, we need replace the asymptotic form

$$\Psi \xrightarrow[r_{ij} \to 0]{} (1/r_{ij} - 1/a) A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

Consequently we don't expect a 1/k⁴ tail

Nuclear Scales

- The pion mass $\mu_{\pi}^{-1} = \hbar/m_{\pi}c \approx 1.4 \text{ fm}$
- Scattering lengths $a_t = 5.4 \text{ fm}$, $a_s \approx 20 \text{ fm}$, thus $\mu_\pi |a| \geq 3.8$
- The nuclear radius is $R \approx 1.2 A^{1/3}$ fm
- Interparticle distance $d \approx 2.4$ fm, thus $\mu_{\pi} d \approx 1.7$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics
- The interaction range is significant
- There could be different interaction channels not only s-wave
- Therefore, we need replace the asymptotic form

$$\Psi \xrightarrow[r_{ij} \to 0]{} (1/r_{ij} - 1/a) A_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

• Consequently we don't expect a $1/k^4$ tail

Nuclear Scales

- The pion mass $\mu_{\pi}^{-1} = \hbar/m_{\pi}c \approx 1.4$ fm
- Scattering lengths $a_t = 5.4 \text{ fm}$, $a_s \approx 20 \text{ fm}$, thus $\mu_\pi |a| \geq 3.8$
- The nuclear radius is $R \approx 1.2 A^{1/3}$ fm
- Interparticle distance $d \approx 2.4$ fm, thus $\mu_{\pi} d \approx 1.7$

Conclusions

- The Tan conditions are not strictly applicable in nuclear physics
- The interaction range is significant
- There could be different interaction channels not only s-wave
- Therefore, we need replace the asymptotic form

$$\Psi \xrightarrow[r_{ij} \to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A_{ij}^{\alpha}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

• Consequently we don't expect a $1/k^4$ tail

• In nuclear physics we have 3 possible particle pairs

 $ij = \{pp, nn, pn\}$

• For each pair there are different channels

 $\alpha = (s, \ell)jm$

• For each pair we define the contact matrix

$$C^{lphaeta}_{ij}\equiv N_{ij}\langle A^{lpha}_{ij}|A^{eta}_{ij}
angle$$

using the normalization

$$\int_{k_F}\!\!\frac{dm{k}}{(2\pi)^3}| ilde{arphi}_{lpha}(m{k})|^2=1$$

• For $\ell=0$ we need consider **4** contacts

$$\{C_{pp}^{S=0}, C_{nn}^{S=0}, C_{np}^{S=0}, C_{np}^{S=1}\}$$

Adding isospin symmetry the number of contacts is 2,

$$C_s = C_{np}^{S=0}, \ C_t = C_{np}^{S=1}$$

• In nuclear physics we have 3 possible particle pairs

 $ij = \{pp, nn, pn\}$

• For each pair there are different channels

 $\alpha = (s, \ell)jm$

• For each pair we define the contact matrix

$$C^{lphaeta}_{ij}\equiv N_{ij}\langle A^{lpha}_{ij}|A^{eta}_{ij}
angle$$

using the normalization

$$\int_{k_F} \frac{d\boldsymbol{k}}{(2\pi)^3} |\tilde{\varphi}_{\alpha}(\boldsymbol{k})|^2 = 1$$

• For $\ell=0$ we need consider **4** contacts

 $\{C_{pp}^{S=0}, C_{nn}^{S=0}, C_{np}^{S=0}, C_{np}^{S=1}\}$

• Adding isospin symmetry the number of contacts is 2,

$$C_s = C_{np}^{S=0}, \ C_t = C_{np}^{S=1}$$

• In nuclear physics we have 3 possible particle pairs

 $ij = \{pp, nn, pn\}$

• For each pair there are different channels

 $\alpha = (s, \ell)jm$

• For each pair we define the contact matrix

$$C^{lphaeta}_{ij}\equiv N_{ij}\langle A^{lpha}_{ij}|A^{eta}_{ij}
angle$$

using the normalization

$$\int_{k_F} \frac{d\boldsymbol{k}}{(2\pi)^3} |\tilde{\varphi}_{\alpha}(\boldsymbol{k})|^2 = 1$$

• For $\ell = 0$ we need consider 4 contacts

$$\{C_{pp}^{S=0}, C_{nn}^{S=0}, C_{np}^{S=0}, C_{np}^{S=1}\}$$

Adding isospin symmetry the number of contacts is 2,

.

$$C_s = C_{np}^{S=0}, \ C_t = C_{np}^{S=1}$$

• In nuclear physics we have 3 possible particle pairs

 $ij = \{pp, nn, pn\}$

• For each pair there are different channels

 $\alpha = (s, \ell)jm$

• For each pair we define the contact matrix

$$C^{lphaeta}_{ij}\equiv N_{ij}\langle A^{lpha}_{ij}|A^{eta}_{ij}
angle$$

using the normalization

$$\int_{k_F} \frac{d\boldsymbol{k}}{(2\pi)^3} |\tilde{\varphi}_{\alpha}(\boldsymbol{k})|^2 = 1$$

• For $\ell = 0$ we need consider 4 contacts

$$\{C_{pp}^{S=0}, C_{nn}^{S=0}, C_{np}^{S=0}, C_{np}^{S=1}\}$$

• Adding isospin symmetry the number of contacts is 2,

$$C_s = C_{np}^{S=0}, \ C_t = C_{np}^{S=1}$$

A comment

The contact matrix and $\ell \neq 0$ partial waves

A system of one component fermion - *p*-wave interaction

The asymptotic momentum distribution takes the form

C. Luciuk, et al., Nature Phys. 12, 599 (2016)

The nuclear contact relations/applications

- O The nuclear photoabsorption cross-section The quasi-deutron model R. Weiss, B. Bazak, N. Barnea, PRL 114, 012501 (2015)
- O The 1-body and 2-body momentum distributions
 - R. Weiss, B. Bazak, N. Barnea, PRC 92, 054311 (2015)
 - M. Alvioli et al., arXiv:1607.04103 [nucl-th] (2016)
 - R. Weiss, E. Pazy, N. Barnea, Few-Body syst. (2016)
- Seneralized treatment of the photoabsorption cross-section

R. Weiss, B. Bazak, N. Barnea, EPJA (2016)

Electron scattering

O. Hen et al., PRC 92, 045205 (2015)

Symmetry energy

B.J. Cai, B.A. Li, PRC 93, 014619 (2016)

...

Photoabsorption of Nuclei

Up to $\hbar\omega\approx 200$ MeV the cross-section $\sigma_A(\omega)$ is dominated by the dipole operator

$$\sigma_{A}\left(\omega\right)=4\pi^{2}\alpha\omega R\left(\omega\right)$$

R is the response function

$$R(\omega) = \sum_{f} \left| \langle \Psi_f \left| \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}} \right| \Psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega)$$

The Quasi-Deuteron picture

J. S. Levinger

"The high energy nuclear photoeffect", Phys. Rev. 84, 43 (1951).

- The photon carries energy but (almost) no momentum
- It is captured by a single proton.
- The proton is ejected without any FSI.
- Momentum conservation ⇒ a nucleon with opposite momentum must be ejected k ≈ −k_p.
- Dipole dominance \Rightarrow this partner must be a **neutron**.
- $\hbar\omega \longrightarrow \infty \Rightarrow \sigma(\omega)$ depends on a **universal** short range *pn* wave-function.
- The resulting cross-section is given by

$$\sigma_A(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$

• L is known as the Levinger Constant

The Quasi-Deuteron revisited

If the reaction take place when a pn pair are close together then

$$\begin{split} \Psi_{0} &\cong \sum_{\alpha} \varphi_{\alpha}(\boldsymbol{r}_{pn}) A_{pn}^{\alpha} \left(\boldsymbol{R}_{pn}, \{\boldsymbol{r}_{j}\}_{j \neq p, n} \right) \\ \Psi_{f}^{\alpha} &\cong \frac{4\pi}{\sqrt{C_{\alpha}}} \hat{\mathcal{A}} \left\{ \frac{1}{\sqrt{\Omega}} e^{-i \mathbf{k} \cdot \mathbf{r}_{pn}} \chi_{s \mu_{s}} A_{pn}^{\alpha} (\boldsymbol{R}_{pn}, \{\boldsymbol{r}_{j}\}_{j \neq p, n}) \right\} \end{split}$$

With these wave functions it is easy to get the **"universal"** tail of the nuclear photoabsorption **dipole** response function

$$R(\omega) = \sum_{\alpha,\beta} C_{pn}^{\alpha\beta} R_{\alpha\beta}(\omega)$$

where

$$R_{\alpha\beta}(\omega) = \sum_{s,\mu_s} \int \frac{d\hat{k}}{(2\pi)^3} \langle ks\mu_s | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}}_{pn} | \alpha \rangle^* \langle ks\mu_s | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}}_{pn} | \beta \rangle$$

are "universal" 2-body channel response functions

The Quasi-Deuteron revisited

If the reaction take place when a pn pair are close together then

$$\begin{split} \Psi_{0} &\cong \sum_{\alpha} \varphi_{\alpha}(\boldsymbol{r}_{pn}) A_{pn}^{\alpha} \left(\boldsymbol{R}_{pn}, \{\boldsymbol{r}_{j}\}_{j \neq p, n} \right) \\ \Psi_{f}^{\alpha} &\cong \frac{4\pi}{\sqrt{C_{\alpha}}} \hat{\mathcal{A}} \left\{ \frac{1}{\sqrt{\Omega}} e^{-i \mathbf{k} \cdot \mathbf{r}_{pn}} \chi_{s \mu_{s}} A_{pn}^{\alpha} (\boldsymbol{R}_{pn}, \{\boldsymbol{r}_{j}\}_{j \neq p, n}) \right\} \end{split}$$

With these wave functions it is easy to get the "universal" tail of the nuclear photoabsorption dipole response function

$$R(\omega) = \sum_{\alpha,\beta} C_{pn}^{\alpha\beta} R_{\alpha\beta}(\omega)$$

where

$$R_{\alpha\beta}(\omega) = \sum_{s,\mu_s} \int \frac{d\hat{k}}{(2\pi)^3} \langle ks\mu_s | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}}_{pn} | \alpha \rangle^* \langle ks\mu_s | \boldsymbol{\epsilon} \cdot \hat{\boldsymbol{D}}_{pn} | \beta \rangle$$

are "universal" 2-body channel response functions

Back to Levinger

The **Levinger** quasi-deutron model is recoverd if we assume **quasi-deuteron dominance**

$$\sigma_A(\omega) = 4\pi^2 \alpha \omega \sum_{\alpha,\beta} C_{pn}^{\alpha\beta} R_{\alpha\beta}(\omega) \approx 4\pi^2 \alpha \omega C_t R_t(\omega)$$

The cross-section of \mathbf{any} nucleus is therefore proportional to the dueteron cross-section $\sigma_d(\omega)$

$$\sigma_{A}(\omega) = \frac{C_{t}}{C_{t}(^{2}\mathrm{H})} \sigma_{d}(\omega) \xrightarrow[]{\text{zero-range}} \frac{a_{t}}{4\pi} \bar{C}_{pn} \sigma_{d}(\omega)$$

Comparing to Levinger's formula

$$\sigma_A(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$

We see that the Levinger constant L is a close relative of the nuclear contacts,

$$L = \frac{A}{NZ} \frac{C_t}{C_t(^2\text{H})} \xrightarrow{\text{zero-range}} \frac{a_t}{4\pi} \frac{A}{NZ} \bar{C}_{pn}$$

Back to Levinger

The **Levinger** quasi-deutron model is recoverd if we assume **quasi-deuteron dominance**

$$\sigma_A(\omega) = 4\pi^2 \alpha \omega \sum_{\alpha,\beta} C_{pn}^{\alpha\beta} R_{\alpha\beta}(\omega) \approx 4\pi^2 \alpha \omega C_t R_t(\omega)$$

The cross-section of \mathbf{any} nucleus is therefore proportional to the dueteron cross-section $\sigma_d(\omega)$

$$\sigma_{A}(\omega) = \frac{C_{t}}{C_{t}(^{2}\mathrm{H})} \sigma_{d}(\omega) \xrightarrow[]{\text{zero-range}} \frac{a_{t}}{4\pi} \bar{C}_{pn} \sigma_{d}(\omega)$$

Comparing to Levinger's formula

$$\sigma_A(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$

We see that the Levinger constant L is a close relative of the nuclear contacts,

$$L = \frac{A}{NZ} \frac{C_t}{C_t(^2\text{H})} \xrightarrow{\text{zero-range}} \frac{a_t}{4\pi} \frac{A}{NZ} \bar{C}_{pn}$$

Back to Levinger

The **Levinger** quasi-deutron model is recoverd if we assume **quasi-deuteron dominance**

$$\sigma_A(\omega) = 4\pi^2 \alpha \omega \sum_{\alpha,\beta} C_{pn}^{\alpha\beta} R_{\alpha\beta}(\omega) \approx 4\pi^2 \alpha \omega C_t R_t(\omega)$$

The cross-section of any nucleus is therefore proportional to the dueteron cross-section $\sigma_d(\omega)$

$$\sigma_A(\omega) = \frac{C_t}{C_t({}^2\mathrm{H})} \sigma_d(\omega) \xrightarrow[]{\text{zero-range}} \frac{a_t}{4\pi} \bar{C}_{pn} \sigma_d(\omega)$$

Comparing to Levinger's formula

$$\sigma_A(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$

We see that the Levinger constant L is a close relative of the nuclear contacts,

$$L = \frac{A}{NZ} \frac{C_t}{C_t(^2\text{H})} \xrightarrow{\text{zero-range}} \frac{a_t}{4\pi} \frac{A}{NZ} \bar{C}_{pn}$$

Back to Levinger

The **Levinger** quasi-deutron model is recoverd if we assume **quasi-deuteron dominance**

$$\sigma_A(\omega) = 4\pi^2 \alpha \omega \sum_{\alpha,\beta} C_{pn}^{\alpha\beta} R_{\alpha\beta}(\omega) \approx 4\pi^2 \alpha \omega C_t R_t(\omega)$$

The cross-section of any nucleus is therefore proportional to the dueteron cross-section $\sigma_d(\omega)$

$$\sigma_A(\omega) = \frac{C_t}{C_t({}^2\mathrm{H})} \sigma_d(\omega) \xrightarrow[]{\text{zero-range}} \frac{a_t}{4\pi} \bar{C}_{pn} \sigma_d(\omega)$$

Comparing to Levinger's formula

$$\sigma_A(\omega) = L \frac{NZ}{A} \sigma_d(\omega)$$

We see that the Levinger constant L is a close relative of the nuclear contacts,

$$L = \frac{A}{NZ} \frac{C_t}{C_t(^2\text{H})} \xrightarrow{\text{zero-range}} \frac{a_t}{4\pi} \frac{A}{NZ} \bar{C}_{pn}$$

1-body neutron and proton momentum distributions

 $n_n(k)$, $n_p(k)$

2-body nn, np, pp momentum distributions

 $F_{nn}(\boldsymbol{k}), F_{pn}(\boldsymbol{k}), F_{pp}(\boldsymbol{k})$

The proton momentum distribution

$$n_p^{IM}(\mathbf{k}) = Z \int \prod_{l \neq p} \frac{d^3 k_l}{(2\pi)^3} \left| \tilde{\Psi}(\mathbf{k}_1, \dots, \mathbf{k}_p = \mathbf{k}, \dots, \mathbf{k}_A) \right|^2$$

Using the asymptotic wave-function

$$\Psi \xrightarrow[r_{ij}\to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A_{ij}^{\alpha}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k\neq i,j})$$

we get

$$\begin{split} n_{p}(\boldsymbol{k}) &= \frac{1}{2J+1} \sum_{\alpha,\beta} \tilde{\varphi}_{pp}^{\alpha\dagger}(\boldsymbol{k}) \tilde{\varphi}_{pp}^{\beta}(\boldsymbol{k}) Z(Z-1) \langle A_{pp}^{\alpha} | A_{pp}^{\beta} \rangle \\ &+ \frac{1}{2J+1} \sum_{\alpha,\beta} \tilde{\varphi}_{pn}^{\alpha\dagger}(\boldsymbol{k}) \tilde{\varphi}_{pn}^{\beta}(\boldsymbol{k}) N Z \langle A_{pn}^{\alpha} | A_{pn}^{\beta} \rangle \end{split}$$

The proton momentum distribution

$$n_p^{IM}(\mathbf{k}) = Z \int \prod_{l \neq p} \frac{d^3 k_l}{(2\pi)^3} \left| \tilde{\Psi}(\mathbf{k}_1, \dots, \mathbf{k}_p = \mathbf{k}, \dots, \mathbf{k}_A) \right|^2$$

Using the asymptotic wave-function

$$\Psi \xrightarrow[r_{ij} \to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A_{ij}^{\alpha}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

we get

$$n_{p}(\boldsymbol{k}) = \sum_{\alpha,\beta} \underbrace{\tilde{\varphi}_{pp}^{\alpha\dagger}(\boldsymbol{k}) \tilde{\varphi}_{pp}^{\beta}(\boldsymbol{k})}_{\text{universal 2b}} 2C_{pp}^{\alpha\beta} + \sum_{\alpha,\beta} \underbrace{\tilde{\varphi}_{pn}^{\alpha\dagger}(\boldsymbol{k}) \tilde{\varphi}_{pn}^{\beta}(\boldsymbol{k})}_{\text{universal 2b}} C_{pn}^{\alpha\beta}$$

Similarly

$$F_{ij}(\mathbf{k}) = \sum_{\alpha,\beta} \tilde{\varphi}_{ij}^{\alpha\dagger}(\mathbf{k}) \tilde{\varphi}_{ij}^{\beta}(\mathbf{k}) C_{ij}^{\alpha\beta}$$

comparing with

$$n_p(k) = \sum_{\alpha,\beta}^{\kappa+} \tilde{\varphi}_{pp}^{\alpha+}(k) \tilde{\varphi}_{pp}^{\beta}(k) 2C_{pp}^{\alpha\beta} + \sum_{\alpha,\beta} \tilde{\varphi}_{pn}^{\alpha+}(k) \tilde{\varphi}_{pn}^{\beta}(k) C_{pn}^{\alpha\beta}$$

the **asymptotic** relations between the 1-body and 2-body momentum distributions **follows**

$$n_p(\mathbf{k}) \xrightarrow[k \to \infty]{} 2F_{pp}(\mathbf{k}) + F_{pn}(\mathbf{k})$$

$$n_n(\mathbf{k}) \xrightarrow[k \to \infty]{} 2F_{nn}(\mathbf{k}) + F_{pn}(\mathbf{k})$$

These are **model independent** relations, that hold regardless of the specific form of φ_{α} and without any assumptions on $\{\alpha\}$

Nir Barnea (HUJI)

Factorization and Universality 21 / 33

Similarly

$$F_{ij}(\mathbf{k}) = \sum_{\alpha,\beta} \tilde{\varphi}_{ij}^{\alpha\dagger}(\mathbf{k}) \tilde{\varphi}_{ij}^{\beta}(\mathbf{k}) C_{ij}^{\alpha\beta}$$

comparing with

$$n_p(k) = \sum_{\alpha,\beta}^{\alpha\beta} \tilde{\varphi}_{pp}^{\alpha\dagger}(k) \tilde{\varphi}_{pp}^{\beta}(k) 2C_{pp}^{\alpha\beta} + \sum_{\alpha,\beta} \tilde{\varphi}_{pn}^{\alpha\dagger}(k) \tilde{\varphi}_{pn}^{\beta}(k) C_{pn}^{\alpha\beta}$$

the **asymptotic** relations between the 1-body and 2-body momentum distributions **follows**

$$n_p(\mathbf{k}) \xrightarrow[k \to \infty]{} 2F_{pp}(\mathbf{k}) + F_{pn}(\mathbf{k})$$

$$n_n(\mathbf{k}) \xrightarrow[k \to \infty]{} 2F_{nn}(\mathbf{k}) + F_{pn}(\mathbf{k})$$

These are **model independent** relations, that hold regardless of the specific form of φ_{α} and without any assumptions on $\{\alpha\}$

Numerical verification of the momentum relations

VMC calculations of light nuclei

- Wiringa et. al. published a series of 1-body, 2-body momentum distributions R. B. Wiringa, *et al.*, PRC **89**, 024305 (2014)
- The data is available for nuclei in the range $2 \le A \le 10$.
- The calculations were done with the VMC method
- For symmetric nuclei $n_p = n_n$

The momentum relations holds for $4 \text{ fm}^{-1} \le k \le 5 \text{ fm}^{-1}$

Extracting the leading contacts

We can extract the **leading** contacts using the asymptotic 2-body momentum distributions

For non-deuteron channels the 2-body functions are E = 0 scattering w.f.

Example - VMC calculations of $^{10}\mathrm{B}$

Further numerical verifications

The resulting asymptotic 1-body momentum distribution is given by

 $n_n^{\infty}(\mathbf{k}) \cong |\tilde{\varphi}_{np}^t(\mathbf{k})|^2 \mathbf{C}_t + 2|\tilde{\varphi}_{nn}^s(\mathbf{k})|^2 \mathbf{C}_s$

Comparing with the VMC data

Surprisingly, the agreement holds for $k_F \leq k \leq 6 \ {\rm fm}^{-1}$

Further numerical verifications

The resulting asymptotic 1-body momentum distribution is given by

 $n_n^{\infty}(\mathbf{k}) \cong |\tilde{\varphi}_{np}^t(\mathbf{k})|^2 \mathbf{C}_t + 2|\tilde{\varphi}_{nn}^s(\mathbf{k})|^2 \mathbf{C}_s$

Comparing with the VMC data

Surprisingly, the agreement holds for $k_F \le k \le 6 \text{ fm}^{-1}$

The 1-body momentum distribution

R. Weiss, R. Cruz-Torres, et al., arXiv:1612.00923 (2016)

Factorization and Universality 25 / 33

Theory and Experiment

Assuming deutron channel dominance $C_t \gg C_s$, we can derive the relations

 $\frac{F_{pn}(^{A}X)}{n_{p}(^{2}H)} \cong \frac{C_{t}(^{A}X)}{C_{t}(^{2}H)} \cong L\frac{NZ}{A}$

Theory and Experiment

Assuming deutron channel dominance $C_t \gg C_s$, we can derive the relations

 $\frac{F_{pn}(^{A}X)}{n_{p}(^{2}H)} \cong \frac{C_{t}(^{A}X)}{C_{t}(^{2}H)} \cong L\frac{NZ}{A}$ Experiment -Theory -Photoabsorption AV18+UBIX

Theory and Experiment

Assuming deutron channel dominance $C_t \gg C_s$, we can derive the relations

 $\frac{F_{pn}(^{A}X)}{n_{p}(^{2}H)} \cong \frac{C_{t}(^{A}X)}{C_{t}(^{2}H)} \cong L\frac{NZ}{A}$

Theory and Experiment

Assuming deutron channel dominance $C_t \gg C_s$, we can derive the relations

 $\frac{F_{pn}(^{A}X)}{n_{p}(^{2}H)} \cong \frac{C_{t}(^{A}X)}{C_{t}(^{2}H)} \cong L\frac{NZ}{A}$

Two-body knockout reactions

Electron scattering

The ratio of short range pp and np pairs is given by

Coulomb Sum Rule

The Coulomb sum rule

$$CSR(\boldsymbol{q}) \equiv \int_{0^+} d\omega R_L(\omega, \boldsymbol{q})$$

Assuming point-like particles

 $CSR(\boldsymbol{q}) = \langle \Psi | \hat{
ho}_c^{\dagger}(\boldsymbol{q}) \hat{
ho}_c(\boldsymbol{q}) | \Psi
angle - | \langle \Psi | \hat{
ho}_c(\boldsymbol{q}) | \Psi
angle |^2$

where

$$\hat{
ho}_c(\boldsymbol{q}) = \sum_{j=1}^A e^{i \boldsymbol{q} \cdot \boldsymbol{r}_j} rac{1- au_z^i}{2} = \sum_{p=1}^Z e^{i \boldsymbol{q} \cdot \boldsymbol{r}_p}$$

Thus

$$\langle \Psi | \hat{
ho}_c^{\dagger}(m{q}) \hat{
ho}_c(m{q}) | \Psi
angle = Z + \langle \Psi | \sum_{p'
eq p} e^{i m{q} \cdot (m{r}_p - m{r}_{p'})} | \Psi
angle$$

The $q \longrightarrow \infty$ limit

$$\langle \Psi | \hat{
ho}_c^{\dagger}(q) \hat{
ho}_c(q) | \Psi
angle = Z + \langle \Psi | \sum_{p
eq p'} e^{i q \cdot r_{p'p}} | \Psi
angle$$

In this limit we can replace the wave-function by its asymptotic form

$$\Psi \xrightarrow[r_{ij} \to 0]{} \sum_{\alpha} \varphi_{\alpha}(\mathbf{r}_{ij}) A^{\alpha}_{ij}(\mathbf{R}_{ij}, \{\mathbf{r}_k\}_{k \neq i,j})$$

therefore

$$\langle \Psi | \hat{\rho}_{c}^{\dagger}(\boldsymbol{q}) \hat{\rho}_{c}(\boldsymbol{q}) | \Psi \rangle = Z + \sum_{\alpha\beta} Z(Z-1) \langle A_{pp}^{\alpha\dagger} | A_{pp}^{\beta} \rangle \underbrace{h_{pp}^{\alpha\beta}(\boldsymbol{q})}_{\text{universal 2b}}$$

where

$$h_{pp}^{lphaeta}(\boldsymbol{q}) = \int d\boldsymbol{r} \varphi_{pp}^{lpha\dagger}(\boldsymbol{r}) e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \varphi_{pp}^{eta}(\boldsymbol{r})$$

Summing up, for $q
ightarrow \infty$

$$CSR(q) = Z + \sum_{\alpha\beta} 2C_{pp}^{\alpha\beta} h_{pp}^{\alpha\beta}(q) - \rho_c^2(q)$$

The CSR - Numerical examples

Comparison with VMC calculations

 $f_{pp}(\boldsymbol{q}) = \langle \Psi | \rho_c(\boldsymbol{q}) \rho_c(\boldsymbol{q}) | \Psi
angle - Z$

The asymptotic result

$$f_{pp}(\boldsymbol{q}) \longrightarrow 2C_{pp}^{S=0}h_{pp}^{S=0}(\boldsymbol{q})$$

⁹Be

Factorization and universality and nuclear physics

- Rederived Levinger's Quasi-Deuteron model utilizing the factorization ansatz
- The Levinger constant and the nuclear contacts are close relatives
- Derived momentum relations for nuclear physics

$$n_p(k) \xrightarrow[k \to \infty]{} 2F_{pp}(k) + F_{pn}(k)$$
$$n_n(k) \xrightarrow[k \to \infty]{} 2F_{nn}(k) + F_{pn}(k)$$

- 3-body generalization is under way
- The 1-body momentum distribution seems to be dominated (upto 10%) by 2-body correlations, from $k_F \mbox{ up}$
- CSR

Outlook

- Electron scattering
- Neutrino scattering
- Ο...
- . . .
- Ο . . .

We have only started to explore the usefulness of the contact formalism in nuclear physics !

Thank you !