Chiral two- and three-nucleon forces with explicit Delta degree of fireedom

A. M. Gasparyan, Ruhr-Universität Bochum

in collaboration with
H. Krebs, E. Epelbaum,
D. Siemens, V. Bernard, Ulf-G. Meißner

February 28, 2017, TRIUMF

Outline

\rightarrow Introduction\&Motivation
$\rightarrow 2-\mathrm{N}$ forces with explicit Δ
$\rightarrow 3-\mathrm{N}$ forces with explicit Δ
$\rightarrow \pi \mathrm{N}$ scattering with explicit Δ
\rightarrow Summary and Outlook

EFT with explicit $\Delta(1232)$

\rightarrow Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta}-m_{N}=293 \mathrm{MeV}$

EFT with explicit $\Delta(1232)$

\rightarrow Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta}-m_{N}=293 \mathrm{MeV}$
\rightarrow Small scale expansion: $Q \sim M_{\pi} \sim \Delta \ll \Lambda_{\chi}$
Hemmert, Holstein, Kambor '98

EFT with explicit $\Delta(1232)$

\rightarrow Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta}-m_{N}=293 \mathrm{MeV}$
\rightarrow Small scale expansion: $Q \sim M_{\pi} \sim \Delta \ll \Lambda_{\chi}$
Hemmert, Holstein, Kambor '98
$\rightarrow \Delta$ gives a large contribution to $\mathrm{LEC}\left(\mathrm{C}_{3}, \mathrm{C}_{4}\right)$ via resonance saturation Bernard, Kaiser, Meißner '97

EFT with explicit $\Delta(1232)$

\rightarrow Standard chiral expansion: $Q \sim M_{\pi} \ll \Delta \equiv m_{\Delta}-m_{N}=293 \mathrm{MeV}$
\rightarrow Small scale expansion: $Q \sim M_{\pi} \sim \Delta \ll \Lambda_{\chi}$
Hemmert, Holstein, Kambor '98
$\rightarrow \Delta$ gives a large contribution to $\mathrm{LEC}\left(\mathrm{C}_{3}, \mathrm{C}_{4}\right)$ via resonance saturation Bernard, Kaiser, Meißner '97

\rightarrow Explicit decoupling of Δ makes comparison with Δ-less theory more transparent Bernard, Fearing, Hemmert, Meißner '98
finite parts of LECs can be always chosen such that
Appelquist, Carrazone '74 (Decoupling theorem)

$$
\lim _{\Delta \rightarrow \infty}=\Delta-\text { less }
$$

Small scale expansion of 2NF

Δ-less theory

LO		
NLO		
$\mathrm{N}^{2} \mathrm{LO}$		H\|
N3LO		
$\mathrm{N}^{4} \mathrm{LO}$		

Small scale expansion of 2NF

Δ-less theory

Δ-full theory: additional graphs

LO

NLO

$\mathrm{N}^{2} \mathrm{LO}$

$\mathrm{N}^{3} \mathrm{LO}$

Krebs, Epelbaum, Meißner '07
$\mathrm{N}^{4} \mathrm{LO}$

Small scale expansion of 2NF

Δ－less theory

Δ－full theory：additional graphs

LO

NLO

$\mathrm{N}^{2} \mathrm{LO}$
$\mathrm{N}^{2} \mathrm{LO}$

$\mathrm{N}^{4} \mathrm{LO}$
林林排

Small scall expansion of 2NF

Δ-less theory

Δ-full theory: additional graphs

LO

Preliminary resullts for $\mathbb{N}^{3} \mathrm{LO}$

2N forces with explicit Δ

\rightarrow Only 2-pion-exchange contribution are considered (the long range part)
$\rightarrow 1 / \mathrm{m}_{\mathrm{N}}$ corrections are not yet included
\rightarrow Results for peripheral phases, no refitting of LEC's, no cut offs
\rightarrow No additional parameters, h_{A} and $\mathrm{g}_{1}(\pi \mathrm{~N} \Delta$ and $\pi \Delta \Delta)$ are extracted from the fit to $\pi \mathrm{N}$ scattering

F and G waves

Data:Nijmegen PWA

F and G waves

Data:Nijmegen PWA

Fand G waves

F-waves might be sensitive to the short-range physics

Significant improvement compared with Δ-less case

Data:Nijmegen PWA

H and I waves

Data:Nijmegen PWA

Mixing angles $\varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}$

Small scale expansion of 3NF

Small scale expansion of 3NF

Small scale expansion of 3NF

Long-range 3NF

Long-range 3NF

Long-range 3NF

\rightarrow Only the long range part considered (coordinate space)
\rightarrow Scheme independent
\rightarrow No unknown parameters

Most general structure of a. local 3NF

Krebs, Gasparyan, Epelbaum '13
Up to $\mathrm{N}^{4} \mathrm{LO}$ all considered contribution are local

```
Constraints:
Locality
-> Isospin symmetry
Parity and time-reversal invariance
```


Most general structure of a. local 3NF

Krebs, Gasparyan, Epelbaum '13
Up to $\mathrm{N}^{4} \mathrm{LO}$ all considered contribution are local

```
Constraints:
Locality
-> Isospin symmetry
Parity and time-reversal invariance
```


Most general structure of a. local 3NF

Krebs, Gasparyan, Epelbaum '13
Up to $\mathrm{N}^{4} \mathrm{LO}$ all considered contribution are local

Two-pion-exhcange $3 N F$ in Δ-full and Δ-less approach (preliminary)

Krebs, Gasparyan, Epelbaum, in preparation
TPE "structure functions" F_{i} in MeV " in equilateral-triangle configuration

- N^{4} LO Δ-less
$-\cdot \cdot-N^{3}$ LO- Δ

Two-pion-exhcange $3 N F$ in Δ-full and Δ-less approach (preliminary)

Krebs, Gasparyan, Epelbaum, in preparation
TPE "structure functions" F_{i} in MeV " in equilateral-triangle configuration

- N^{4} LO Δ-less
$-\cdot \cdot-N^{3}$ LO- Δ

Two-pion-exhcange $3 N F$ in \triangle-full and Δ-less approach (preliminary)

Krebs, Gasparyan, Epelbaum, in preparation

TPE "structure functions" F_{i} in MeV^{\prime} " in equilateral-triangle configuration

- N^{4} LO Δ-less
$-\cdots-N^{3}$ LO- Δ
\rightarrow similar results for large contributions
\rightarrow slightly different for small contributions

Two-pion-one-pion-exhcange 3NF in Δ-full and Δ-less approach (preliminary)

— $\mathrm{N}^{4} \mathrm{LO}$ (nucl.)
----- $\mathrm{N}^{3} \mathrm{LO}$

- $\mathrm{N}^{3} \mathrm{LO}+\mathrm{N}^{4} \mathrm{LO}$
--..-.. N ${ }^{3}$ LO- Δ
Bands indicate physics not described by explicit Δ-contributions

Two-pion-one-pion-exhcange 3NF in Δ-full and Δ-less approach (preliminary)

0.02

— $\mathrm{N}^{4} \mathrm{LO}$ (nucl.)
----- $\mathrm{N}^{3} \mathrm{LO}$

- $\mathrm{N}^{3} \mathrm{LO}+\mathrm{N}^{4} \mathrm{LO}$
.-..-.. N ${ }^{3}$ LO- Δ
Bands indicate physics not described by explicit Δ-contributions

Two-pion-one-pion-exhcange 3NF in Δ-full and Δ-less approach (preliminary)

0.02
— $\mathrm{N}^{4} \mathrm{LO}$ (nucl.)

- - - - - $\mathrm{N}^{3} \mathrm{LO}$
- $\mathrm{N}^{3} \mathrm{LO}+\mathrm{N}^{4} \mathrm{LO}$
.-..-.. N ${ }^{3}$ LO- Δ

Bands indicate physics not described by explicit Δ-contributions
\rightarrow Dominant effects come from $\mathrm{N}^{3} \mathrm{LO}-\Delta / \mathrm{N}^{4} \mathrm{LO}$
\rightarrow The largest N^{4} LO contribution is saturated by Δ

Ring-topology 3NF in Δ-full and Δ-less approach (preliminary)

 $-\begin{aligned} & 0.015 \\ & 0.01\end{aligned}$ 0.005 0

-0.005 0.001
 -0.001

0.001
$\left\{\begin{array}{l}0.00 \\ 0\end{array}\right.$

 0.04 0.03

-0.01
-0.02
-0.03
. 00 0.002 -0.002 -0.01 -0.02

0.002

— $\mathrm{N}^{4} \mathrm{LO}$ (nucl.)
----- $N^{3} \mathrm{LO}$
—— $\mathrm{N}^{3} \mathrm{LO}+\mathrm{N}^{4} \mathrm{LO}$
$\mathrm{N}^{3} \mathrm{LO}-\Delta$

Ring-topology 3NF in Δ-full and Δ-less approach (preliminary)

— $\mathrm{N}^{4} \mathrm{LO}$ (nucl.)
----- $\mathrm{N}^{3} \mathrm{LO}$

- $\mathrm{N}^{3} \mathrm{LO}+\mathrm{N}^{4} \mathrm{LO}$
- ..--. $\mathrm{N}^{3} \mathrm{LO}-\Delta$

\rightarrow Narrow bands:
higher order contributions beyond Δ are small

Ring-topology 3NF in $\triangle-$ full and Δ-less approach (preliminary)

-0.01
-0.02
-0.03

—— $\mathrm{N}^{4} \mathrm{LO}$ (nucl.)

- - - - - $\mathrm{N}^{3} \mathrm{LO}$
- $\mathrm{N}^{3} \mathrm{LO}+\mathrm{N}^{4} \mathrm{LO}$
.-..-. $\mathrm{N}^{3} \mathrm{LO}-\Delta$

\rightarrow Narrow bands:

higher order contributions beyond Δ are small
\rightarrow Strong central isoscalar 3NF due to double- Δ excitation

Ring-topology 3NF in \triangle-full and Δ-less approach (preliminary)

0.002
-0.004
-0.006

- $\mathrm{N}^{4} \mathrm{LO}$ (nucl.)
----- N ${ }^{3}$ LO
- $\mathrm{N}^{3} \mathrm{LO}+\mathrm{N}^{4} \mathrm{LO}$
.-..-.. N ${ }^{3}$ LO- Δ
\rightarrow Narrow bands:
higher order contributions beyond Δ are small
\rightarrow Strong central isoscalar 3NF due to double- Δ excitation
\rightarrow Explicit- Δ approach is more efficient !

«N input for 3-Nucleon Forces

\rightarrow Longest-range contributions
\rightarrow Intermediate-range contributions
\rightarrow Short-range contributions

$2 \pi-$
exchange

$2 \pi-1 \pi-$
exchange

«N input for 3-Nucleon Forces

\rightarrow Longest-range contributions
\rightarrow Intermediate-range contributions
\rightarrow Short-range contributions

$\pi \mathrm{N}$ scattering up to ε^{4}

Siemens et al. In preparation

ε^{3}

πN scattering up to ε^{4}

Siemens et al. In preparation

redundant, can be absorbed by redefining other LEC's

$\pi \mathrm{N}$ differential cross section

- $\mathrm{T}_{\pi}=167 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=140 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=121 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=90 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=42 \pm 5 \mathrm{MeV}$
----- ε^{3}
$-\varepsilon^{4}$

$\pi \mathrm{N}$ differential cross section

- $\mathrm{T}_{\pi}=167 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=140 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=121 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=90 \pm 5 \mathrm{MeV}$
- $\mathrm{T}_{\pi}=42 \pm 5 \mathrm{MeV}$
----- ε^{3}
$-\varepsilon^{4}$
\rightarrow Theoretical error-bands are narrower

Quality of the fit to $\mathrm{\pi N}$ clata

 in the Δ-less and Δ-full $\chi \mathrm{PT}$ (without theoretical errors)HB-NN HB- $\pi \mathrm{N}$ covariant

Quality of the fit to $\pi \mathrm{N}$ data

 in the Δ-less and Δ-full $\chi \mathrm{PT}$ (without theoretical errors)HB-NN HB- $\pi \mathrm{N}$ covariant

Summary

\rightarrow Preliminary results for Δ-full chiral 2-nucleon and 3-nucleon forces at $\mathrm{N}^{3} \mathrm{LO}$ are presented
\rightarrow 2-nucleon forces (peripheral phases): significant improvement compared to the Δ-less case
\rightarrow 3-nucleon forces: indication of a better convergence; sizable Δ-contributions missing in Δ-less $\mathrm{N}^{4} \mathrm{LO} 3 N F \sim \mathrm{O}\left(1 / \Delta^{2}\right)$
\rightarrow New results for $\pi \mathrm{N}$ scattering at order ε^{4} : much better fit to data

Outlook

\rightarrow Completing construction of Δ-full chiral 2 N and 3 N forces at $\mathrm{N}^{3} \mathrm{LO}$ and moving forward to even more precise nuclear forces.

