Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle

R. Wirth R. Roth

Institut für Kernphysik

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation

Why hypernuclei?

- Add new dimension to the nuclear chart
- New effects, e.g. Λ-Σ conversion
- Uncertainties in nuclear Hamiltonian under control

44

- Explore (broken) SU(3)_f symmetry
- Astrophysics (neutron stars)

Hypernuclear Hamiltonian

$\textbf{\textit{H}} = \Delta \textbf{\textit{M}} + \textbf{\textit{T}}_{int} + \textbf{\textit{V}}_{NN} + \textbf{\textit{V}}_{3N} + \textbf{\textit{V}}_{YN}$

■ NN: chiral N³LO

Phys. Rev. C 68, 041001(R) (2003)

 $\Lambda_{NN}=500\,MeV$

3N: chiral N²LO

Navrátil Few-Body Syst. 41, 117 (2007)

 $\Lambda_{3N}=500\,MeV$

YN: chiral LO Polinder, Haidenbauer & Meißner

Nucl. Phys. A 779, 244 (2006)

 $\Lambda_{YN}=600\,\text{MeV},\,700\,\text{MeV}$

NN+3N yields quantitative description of p-shell nuclei

Importance-Truncated No-Core Shell Model

A-body Slater determinants from HO states

$$|s_1s_2\cdots s_A\rangle$$
, $s_i \equiv |e(I\frac{1}{2})j\chi\rangle_i$

• Λ - Σ conversion, e.g.

 $\left| pn\Lambda\right\rangle ,\left| pp\Sigma^{-}\right\rangle ,\left| nn\Sigma^{+}\right\rangle \in\mathcal{M}(_{\Lambda}^{3}\mathsf{H})$

- Impose N_{max} truncation
- Importance truncation: discard irrelevant states + a posteriori extrapolation
- Diagonalize Hamilton matrix ⇒ Energies & wave functions

R. Wirth - 2/2016 - 5

Evolution in Three-Body Space

 ξ_2 ξ_1

- Introduce Jacobi coordinates and partially antisymmetrized states |α)
- Diagonalize antisymmetrizer $\langle \alpha | A | \alpha' \rangle$ ⇒ Basis $|EiXJT\rangle_a$ (X = ΛNN , ΣNN)
- Hamiltonian decouples into TJP blocks
- For each block: Compute matrix elements and solve SRG flow equation
- Transform back to single-particle coordinates (JT-coupled matrix elements)

Like 3N, but 3 isospin channels and 2 particle combinations

Flow Parameter Dependence

Flow Parameter Dependence

Flow Parameter Dependence

Induced YNN Terms

Origin of the Induced Terms

- **Two-body evolution suppresses** Λ - Σ conversion
- Mechanism for inducing YNN?

Origin of the Induced Terms

- **Two-body evolution suppresses** Λ - Σ conversion
- Mechanism for inducing YNN?

⇒ Induced YNN terms driven by suppression of Λ - Σ conversion?

Origin of the Induced Terms — Wegner SRG

Explicitly suppress Λ-Σ conversion. How?

$$oldsymbol{H} = egin{pmatrix} oldsymbol{H}_{\Lambda} & oldsymbol{H}_{\Lambda\Sigma} \ oldsymbol{H}_{\Lambda\Sigma}^{\dagger} & oldsymbol{H}_{\Sigma} \end{pmatrix}$$

• Wegner SRG generator $\boldsymbol{\eta}_W(\alpha) = [\boldsymbol{H}_d(\alpha), \boldsymbol{H}(\alpha)]$:

Integrate out Σ d.o.f., controlled by SRG flow parameter.

Origin of the Induced Terms — Wegner SRG

Origin of the Induced Terms — Wegner SRG

Implications for Neutron Star Structure

Neutron Stars — The Hyperon Puzzle

- Expect hyperon production at high densities
- Neutron matter \rightarrow Strange matter: Add \land and \land N interaction
- But: EoS softens too much \Rightarrow Excluded by $2M_{\odot}$ NS
- One solution: Add surprisingly strong repulsive ANN force. Why?

Neutron Stars — Calculating Strange Matter

Auxiliary Field Diffusion Monte Carlo

Lonardoni *et al.* PRL **114**, 092301 (2014) Lonardoni *et al.* PRC **89**, 014314 (2013)

- Simple Hamiltonian in operator form: AV8' + UIX + Λ N + Λ NN
- Heavy hypernuclei and matter accessible in same framework
- Two fits for ANN:
 - ANN(I) fits B_{Λ} of $_{\Lambda}^{5}$ He and $_{\Lambda}^{17}$ O in Variational MC, ANN(II) reproduces both in AFDMC

Neutron Stars — Calculating Strange Matter

Auxiliary Field Diffusion Monte Carlo

Lonardoni *et al.* PRL **114**, 092301 (2014) Lonardoni *et al.* PRC **89**, 014314 (2013)

- Simple Hamiltonian in operator form: AV8' + UIX + ∧N + ∧NN
- Heavy hypernuclei and matter accessible in same framework
- Two fits for ∧NN:
 - ANN(I) fits B_{Λ} of $_{\Lambda}^{5}$ He and $_{\Lambda}^{17}$ O in Variational MC, ANN(II) reproduces both in AFDMC

Neutron Stars — Calculating Strange Matter

Auxiliary Field Diffusion Monte Carlo

Lonardoni *et al.* PRL **114**, 092301 (2014) Lonardoni *et al.* PRC **89**, 014314 (2013)

- Simple Hamiltonian in operator form: AV8' + UIX + Λ N + Λ NN
- Heavy hypernuclei and matter accessible in same framework
- Two fits for ∧NN:
 - ANN(I) fits B_{Λ} of $_{\Lambda}^{5}$ He and $_{\Lambda}^{17}$ O in Variational MC, ANN(II) reproduces both in AFDMC

Summary & Outlook

- SRG-induced YNN must be accounted for ⇒ Good reproduction of data
- Induced YNN driven by suppression of Λ-Σ conversion
 ⇒ Integrating out (high-energy) Σ d.o.f. generates many-body forces
- Scheme-dependence of the Hyperon Puzzle
 ⇒ Size of three-body forces depends on choice of d.o.f.
 ⇒ SRG as a tool to transform between schemes
- Analyze interaction: NLO, LEC variation at LO
- Build systematics: more p-shell hypernuclei
- Calculate matter with induced three-body terms

Thanks to my group

S. Alexa, S. Dentinger, E. Gebrerufael, T. Hüther, L. Kreher, L. Mertes, R. Roth, S. Schulz, H. Spiess, C. Stumpf, A. Tichai, R. Trippel, K. Vobig Institut für Kemphysik, TU Darmstadt

Thank you for your attention!

COMPUTING TIME

Deutsche Forschungsgemeinschaft

DFG

Exzellente Forschung für Hessens Zukunft

Bundesministerium für Bildung und Forschung