Applications of the unitary－model－operator approach to the closed sub－shell nuclei

Takayuki Miyagi¹，Takashi Abe ${ }^{1}$ ，Ryoji Okamoto²， Michio Kohno ${ }^{3}$ ，and Takaharu Otsuka ${ }^{1}$
${ }^{1}$ Department of Physics，The University of Tokyo
${ }^{2}$ Senior Academy，Kyushu Institute of Technology ${ }^{3}$ Research Center for Nuclear Physics，Osaka University

Motivation
 ab-initio calculations related to this work

To understand microscopically structure of nuclei, it is desirable to use ab initio calculation methods.

For light nuclei ($\mathrm{A} \approx 3$-16)
Green's Function Monte Carlo Method
No-Core Shell Model
For medium mass nuclei ($\mathrm{A} \approx 16-56$)
Coupled-Cluster Method
Self-Consistent Green's Function Method
In-Medium Similarity Renormalization Group
Unitary-Model-Operator Approach (UMOA)

So far, we calculated the ground-state energies and charge radii of ${ }^{4} \mathrm{He}$, ${ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}$, and ${ }^{56} \mathrm{Ni}$ in the UMOA. (TM et al., PTEP (2015).)
To examine the applicability of the UMOA to the sub-shell closed nuclei, we calculate the oxygen isotopes in this work.

Unitary-Model-Operator Approach (UMOA)

K. Suzuki and R. Okamoto, PTP 92, 1045 (1992).

The original non-relativistic nuclear Hamiltonian

$$
\begin{aligned}
& H=\sum_{\alpha \beta}\langle\alpha| t_{1}|\beta\rangle c_{\alpha}^{\dagger} c_{\beta}+\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| v_{12}|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}+\cdots \\
& H\left|\Psi_{k}\right\rangle=E_{k}\left|\Psi_{k}\right\rangle \quad \tilde{H}\left|\Phi_{k}\right\rangle=E_{k}\left|\Phi_{k}\right\rangle \text { Reference state }
\end{aligned}
$$

$$
\tilde{H}=U^{-1} H U \quad \text { unitary transformation of the original Hamiltonian }
$$

$$
U=e^{S^{(1)}} e^{S^{(2)}}
$$

$$
S^{(1)}=\sum_{\alpha \beta}\langle\alpha| S_{1}|\beta\rangle c_{\alpha}^{\dagger} c_{\beta}
$$

one-body correlation operator $S^{(2)}=\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| S_{12}|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}$

$S^{(1)}$ and $S^{(2)}$ are determined self-consistently.
${ }_{16}$ two 24 -body correlation operator

Ground-state energies of oxygen isotopes interaction: chiral NN interaction at N3 $\mathrm{LO}(\mathrm{EM} \wedge=500 \mathrm{MeV}$) model space: $e_{\text {max }}=\max (2 n+l)$

Our energies obtained with largest model space are almost converged.

Summary

We calculated the groundstate energies of the sub-shell closed oxygen isotopes.

Our energies are close to the CCSD results with the same interaction.

CCM results: G. Hagen et al., PRC (2009).

Future work

According to the CCSD and Λ CCSD (T) results, the contribution of triple excitations is not so small. The introduction of the three-body correlation operator ($\mathrm{S}^{(3)}$) would be needed, if we use the bare interactions.

Backup

Unitary-Model-Operator Approach (UMOA)

K. Suzuki and R. Okamoto, PTP 92, 1045 (1992).

The original non-relativistic nuclear Hamiltonian

$$
\begin{aligned}
& H=\sum_{\alpha \beta}\langle\alpha| t_{1}|\beta\rangle c_{\alpha}^{\dagger} c_{\beta}+\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| v_{12}|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}+\cdots \\
& H\left|\Psi_{k}\right\rangle=E_{k}\left|\Psi_{k}\right\rangle \\
& \tilde{H}=U^{-1} H U \quad \text { unitary transformation of the original Hamiltonian } \\
& \left.U=e_{k}\right\rangle=E_{k}\left|\Phi_{k}\right\rangle \text { Reference state } \\
& S^{(1)}=\sum_{\alpha \beta}\langle\alpha| S_{1} \left\lvert\, \beta c_{\alpha}^{(2)} c_{\beta} \quad S^{(2)}=\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| S_{12}|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}\right.
\end{aligned}
$$

One-body correlation operator two-body correlation operator

$$
\mathrm{U} \text { is unitary } \longleftrightarrow S^{(n) \dagger}=-S^{(n)} \quad n=1,2
$$

Cluster expansion of the transformed Hamiltonian

one-body field determined self-consistently

$$
\tilde{H}^{(2)}=\left(\frac{1}{2!}\right)^{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \tilde{v}_{12}|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}-\sum_{\alpha \beta}\langle\alpha| \tilde{u}_{1}|\beta\rangle c_{\alpha}^{\dagger} c_{\beta}
$$

$$
\tilde{H}^{(3)}=\left(\frac{1}{3!}\right)^{2} \sum_{\alpha \beta \gamma \lambda \mu \nu}\langle\alpha \beta \gamma| \tilde{v}_{123}|\lambda \mu \nu\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma}^{\dagger} c_{\nu} c_{\mu} c_{\lambda} \underbrace{-\left(\frac{1}{2!}\right)^{2} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| \tilde{u}_{12}|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}}_{\text {truncated }}
$$

$$
\tilde{v}_{123}=e^{-\left(S_{12}+S_{23}+S_{31}\right)} e^{-\left(S_{1}+S_{2}+S_{3}\right)}\left(h_{1}+h_{2}+h_{3}+v_{12}+v_{23}+v_{31}\right) e^{S_{1}+S_{2}+S_{3}} e^{S_{12}+S_{23}+S_{31}}
$$ three－body transformed interaction $-\left(\tilde{h}_{1}+\tilde{h}_{2}+\tilde{h}_{3}+\tilde{v}_{12}+\tilde{v}_{23}+\tilde{v}_{31}\right)$

$$
\begin{aligned}
& \tilde{H}=\tilde{H}^{(1)}+\tilde{H}^{(2)}+\tilde{H}^{(3)}+\cdots \quad \text { truncated } \\
& \tilde{H}^{(1)}=\sum_{\alpha \beta}\langle\alpha| \tilde{h}_{1}|\beta\rangle c_{\alpha}^{\dagger} c_{\beta}, \quad \tilde{h}_{1}=e^{-⿹ 勹 丿 ⿱ 十 凵_{1}}\left(t_{1}+u_{1}\right) e^{\Omega, s_{1}},\langle\alpha| \tilde{u}_{1}|\beta\rangle=\sum_{\lambda \leqslant \rho_{F}}\langle\alpha \lambda| \tilde{r}_{12}|\beta \lambda\rangle
\end{aligned}
$$

determination of correlation operator

$P^{(n)}, \quad Q^{(n)}$ projection operators onto the n-particle state below and above the Fermi level, respectively
$H^{(n)}\left|\psi_{k}^{(n)}\right\rangle=E_{k}\left|\psi_{k}^{(n)}\right\rangle \quad \mathrm{n}=1,2$ one- and two-body Schrödinger equation
$\left|\psi_{k}^{(n)}\right\rangle=\left\langle\phi_{k}^{(n)}\right\rangle+\omega^{(n)}\left|\phi_{k}^{(n)}\right\rangle$ decomposition of the wave function into the P and Q
P-space component components
mapping operator ω satisfies the decoupling condition.

$$
Q^{(n)}\left(1-\omega^{(n)}\right) H^{(n)}\left(1+\omega^{(n)}\right) P^{(n)}=0
$$

$\omega^{(n)}=\sum_{k=1}^{d} Q^{(n)}\left|\psi_{k}^{(n)}\right\rangle\left\langle\tilde{\phi}_{k}^{(n)}\right| P^{(n)}$
$S^{(n)}=\operatorname{arctanh}\left(\omega^{(n)}-\omega^{(n) \dagger}\right)$
$Q^{(n)} \tilde{H}^{(n)} P^{(n)}=P^{(n)} \tilde{H}^{(n)} Q^{(n)}=0$

Hamiltonian after the transformation

Ground-state energy
Normal ordered zero-body term with respect to the reference state

$$
E_{g, s,} \approx \sum_{\lambda \leq \rho_{F}}\langle\lambda| \tilde{t}_{1}|\lambda\rangle+\frac{1}{2!} \sum_{\lambda \mu \leq \rho_{F}}\langle\lambda \mu| \tilde{v}_{12}|\lambda \mu\rangle+\frac{1}{3!} \sum_{\lambda \mu v \leq \rho_{F}}\langle\lambda \mu v| \tilde{v}_{123}|\lambda \mu v\rangle
$$

