Ab initio NCSMC for three-cluster dynamics

Carolina Romero-Redondo

Progress in Ab Initio Techniques in Nuclear Physics, TRIUMF Vancouver. February 25th, 2016

Collaborators: S. Quaglioni, P. Navrátil, G. Hupin

LLNL-PRES-684340

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

Outline

Lawrence Livermore National Laboratory

Outline

Lawrence Livermore National Laboratory

Bound states

Continuum

S. Baroni, P. Navrátil and S. Quaglioni PRL **110**, 022505 (2013); PRC **87**, 034326 (2013)

Lawrence Livermore National Laboratory

Three-cluster structures appear in many nuclear systems

Three-cluster structures appear in many nuclear systems

Bound and resonant states: 2n Halo nuclei

3-body continuum states: Reactions

$$\Psi^{(A)} = \sum_{\lambda} C_{\lambda} | \langle \mathbf{A} \rangle + \sum_{\nu} \int d\vec{x} \, d\vec{y} \, (\vec{x}, \vec{y}) \, \hat{A}_{\nu} | \langle \mathbf{A} \rangle | \langle$$

.

Lawrence Livermore National Laboratory

۰.

$$\begin{pmatrix} H_{NCSM} & h \\ h & H_{RGM} \end{pmatrix} \begin{pmatrix} \textcircled{C} \\ \swarrow \end{pmatrix} = E \begin{pmatrix} 1_{NCSM} & g \\ g & N_{RGM} \end{pmatrix} \begin{pmatrix} \textcircled{C} \\ \swarrow \end{pmatrix}$$

Expansion in hyperspherical basis $\chi_{\nu}^{J^{\pi}T}(x,y) = \sum_{k} C_{k\nu}(\rho) \phi_{k}^{\ell_{x}\ell_{y}}(\alpha)$

Hyperspherical coordinates

*M. Hesse, J.-M. Sparenberg, E Van Raemdonck, D. Baye. Nuclear Physics A 640 (1998) 37-51

Expansion in hyperspherical basis

$$\chi_{\nu}^{J^{\pi}T}(x,y) = \sum_{k} C_{k\nu}(\rho) \phi_{k}^{\ell_{x}\ell_{y}}(\alpha)$$

Hyperspherical coordinates

*M. Hesse, J.-M. Sparenberg 1, E Van Raemdonck, D. Baye. Nuclear Physics A 640 (1998) 37-51

 $y \sim \vec{r}_{A-a_{23},a_{23}}$ $\vec{r}_{a_2,a_3} \sim x$

Expansion in hyperspherical basis $\chi_{\nu}^{J^{\pi}T}(x,y) = \sum_{k} C_{k\nu}(\rho) \phi_{k}^{\ell_{x}\ell_{y}}(\alpha)$

Hyperspherical coordinates

*M. Hesse, J.-M. Sparenberg 1, E Van Raemdonck, D. Baye. Nuclear Physics A 640 (1998) 37-51

External region: known asymptotic behavior ($\rho > a$)

* Bound state: $C_{k\nu}(\rho) = A_{k\nu}\sqrt{\kappa\rho}K_{k+2}(\kappa\rho)$

* Continuum state: $C_{k\nu}(\rho) = A_{k\nu} \left[H_k^-(\kappa\rho) \delta_{\nu,\nu'} \delta_{k,k'} - S_{\nu k,\nu' k'} H_k^+(\kappa\rho) \right]$

Hyperspherical coordinates

*M. Hesse, J.-M. Sparenberg 1, E Van Raemdonck, D. Baye. Nuclear Physics A 640 (1998) 37-51

⁶He is a two-neutron halo, therefore presenting an extended three-cluster configuration

Interaction used as input

Realistic interactions

chiral N³LO NN (Entem-Machleidt)

Decouples low and high momenta

Induces many-body forces of higher order

There are special values λ for which omitted induced 3N forces "compensate" for the lack of inclusion of real 3N forces

PRL 103, 082501 (2009)

There are special values λ for which omitted induced 3N forces "compensate" for the lack of inclusion of real 3N forces

We will use both λ =1.5 and 2.0 fm⁻¹

⁶He is a two-neutron halo, therefore presenting an extended three-cluster configuration

⁶He ground state, NCSM

╋

⁶He (up to 10 eigenstates)

CRR, S. Quaglioni, P. Navrátil. In progress

*D. Sääf, C. Forssén, PRC **89** 011303 (2014)

CRR, S. Quaglioni, P. Navrátil. In progress

The **NCSM** 6-nucleon eigenstate compensates for the missing many-body correlations

Matter radius

N _{max}	$\Lambda_{\rm SRG}$ =1.5 fm ⁻¹		$\Lambda_{\rm SRG}$ =2.0 fm ⁻¹	
	NCSM	NCSMC (0^+_1)	NCSM	NCSMC (0^+_1)
8	2.18	2.28	2.06	2.30
10	2.22	2.33	2.10	2.35
12	2.25	2.34	2.15	2.36

CRR, S. Quaglioni, P. Navrátil. In progress

The probability distribution of the ⁶He ground state presents two peaks corresponding to the di-neutron and cigar configurations

The probability distribution of the ⁶He ground state presents two peaks corresponding to the di-neutron and cigar configurations

Within the NCSMC, we can see how the RGM part of the basis contributes to the tail of the probability distribution

The spectrum of ⁶He has been remeasured in 2012

The continuum spectrum can be extracted from the phase shifts

The continuum spectrum can be extracted from the phase shifts

We can compare the spectrum given by the different formalisms

We can also study the dependence in the evolution parameter $\lambda_{_{SRG}}$

