Towards Multi-Shell Valence Spaces

Christina Stumpf Klaus Vobig Robert Roth

Institut für Kernphysik

TECHNISCHE UNIVERSITÄT DARMSTADT

Motivation

Valence-Space Shell Model

- successful method for the description of spectroscopic observables using phenomenological effective interactions
- limitations:
 - huge valence-space dimensions in eigenvalue problem
 - traditional effective interactions lack consistent framework for treatment of observables other than the energy

Motivation

Valence-Space Shell Model

- successful method for the description of spectroscopic observables using phenomenological effective interactions
- limitations:
 - huge valence-space dimensions in eigenvalue problem
 - traditional effective interactions lack consistent framework for treatment of observables other than the energy

Improvements on Traditional Approach

- IT-SM: simple and straightforward extension of the shell model to larger valence spaces
- new effective interactions derived in IM-SRG

Importance Truncation

- introduce adaptive truncation criterion: importance threshold κ_{min}
- construct IT model space including only most relevant basis states for basis expansion of target state
- solve eigenvalue problem in IT model space and obtain approximation for target state
- vary κ_{min} and extrapolate to account for effects of basis states excluded from IT model space
 - threshold extrapolation
 - energy-variance (ΔE^2) extrapolation

Highlights: pfg_{1/2}-shell nuclei ⁶⁰Zn and ⁶⁴Ge

- shell-model calculations for ${}^{60}Zn$ and ${}^{64}Ge$ not feasible in pfg_{9/2}-shell
- slow convergence for ⁶⁴Ge due to strong deformation
- variance extrapolation corrects for different truncations employed
- variance-extrapolated energies in excellent agreeement with MCSM

Effective Interactions from IM-SRG

 extension of IM-SRG to nonperturbative derivation of effective shell-model Hamiltonians and operators from chiral potentials

K. Tsukiyama et al., PRC 85, 061304 (2012)

S. Bogner et al., PRL 113, 142501 (2014)

IM-SRG flow equation

- decouples inert core from all possible excitations
- decouples states with A_{ν} valence nucleons from excluded space
- test new effective interactions using IT-SM and IT-NCCI in single- and multi-shell valence spaces

IM-SRG Interactions for sd Shell

- very similar convergence behavior for SM and IT-NCCI
- good agreeement of SM and IT-NCCI results
 - successful decoupling of valence space from core and excluded space

IM-SRG Interactions for sdpf Shell

spurious intruders destroy spectrum

IM-SRG Interactions for sdpf Shell

spurious intruders destroy spectrum

 removal of intruding spurious states not sufficient to remedy IM-SRG effective interactions for sdpf shell