Quantum Monte Carlo calculations of neutron matter with local chiral three-body forces

Ingo Tews,

In collaboration with A. Dyhdalo, D. Furnstahl, S. Gandolfi, A. Gezerlis, K. Hebeler, J. Lynn, A. Schwenk,...

TRIUMF Workshop: "Progress in ab initio techniques in nuclear physics" February 23, 2016, Vancouver

European Research Council Established by the European Commission

Complete N³LO neutron matter calculation in many-body perturbation theory

IT, Krüger, Hebeler, Schwenk, PRL (2013)

Here:

Nonlocal regulators

Band includes:

- NN cutoff variation
- 3N cutoff variation
- > Uncertainties in the c_i couplings
- > Many-body uncertainty \rightarrow Minimize

Status:

Sizeable uncertainty for chiral EFT calculations of neutron matter

Status:

Sizeable uncertainty for chiral EFT calculations of neutron matter

We want to:

- Combine Quantum Monte Carlo method with chiral EFT interactions
- Minimize many-body uncertainty

Status:

Sizeable uncertainty for chiral EFT calculations of neutron matter

We want to:

- Combine Quantum Monte Carlo method with chiral EFT interactions
- Minimize many-body uncertainty

Chiral effective field theory for nuclear forces

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

Separation of scales:

- \blacktriangleright Low momenta $Q \ll$ breakdown scale Λ_b
- > Expansion parameter $\left(\frac{Q}{\Lambda_{h}}\right)^{\nu} \sim 1/3$

Explicit degrees of freedom:

- Pions and nucleons
- Long-range physics explicit, short-range physics expanded in general operator basis
- Couplings fit to data

Systematic:

- Can work to desired accuracy
- Obtain error estimates
- Consistent many-body interactions

Local chiral interactions

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

INSTITUTE for NUCLEAR THEORY

Example:

- > Leading order $V^{(0)} = V_{\text{cont}}^{(0)} + V^{\text{OPE}}$
- ➢ Pion exchanges local → local regulator:

$$f_{\rm long}(r) = 1 - \exp(-r^4/R_0^4)$$

Contact potential:

$$V_{\text{cont}}^{(0)} = \alpha_1 \mathbf{1} + \alpha_2 \, \sigma_1 \cdot \sigma_2 + \alpha_3 \, \tau_1 \cdot \tau_2 \\ + \alpha_4 \, \sigma_1 \cdot \sigma_2 \tau_1 \cdot \tau_2$$

- → Only two independent (Pauli principle) $V_{\text{cont}}^{(0)} = C_S + C_T \sigma_1 \cdot \sigma_2$ $f_{\text{short}}(r) = \alpha \exp(-r^4/R_0^4)$
- This freedom can be used to remove all nonlocal operators up to N²LO

QMC results for NN forces

NN-only calculation:

Statistical uncertainty of points negligible

> Bands include NN cutoff variation $R_0 = 1.0 - 1.2 \text{ fm}$

Order-by-order convergence up to saturation density

QMC results for NN forces

NN-only calculation

Good agreement with other approaches:

MBPT with N²LO EGM IT, Krüger, Hebeler, Schwenk, PRL (2013)

 $\begin{array}{l} \text{CC with } N^2 LO_{opt} \\ \text{Hagen, Papenbrock, Ekström, Wendt,} \\ \text{Baardsen, Gandolfi, Hjorth-Jensen, Horowitz,} \\ \text{PRC (2013)} \end{array}$

MBPT with N²LO_{opt} IT, Krüger, Gezerlis, Hebeler, Schwenk, NTSE (2013)

CIMC with N²LO_{opt} Roggero, Mukherjee, Pederiva, PRL (2014)

QMC with chiral 3N forces

Next: inclusion of leading 3N forces

Three topologies:

- \succ Two-pion exchange V_C
- > One-pion-exchange contact V_D
- > Three-nucleon contact V_E

Only two new couplings: c_D and $c_E \rightarrow$ see talk by Joel Lynn

Two-pion-exchange most important in PNM: usually V_D and V_E vanish in neutron matter (only for regulator symmetric in particle labels)

QMC with chiral 3N forces

For local regulator all three topologies contribute to neutron matter:

$$V_{E} \rightarrow \frac{c_{E}}{2 f_{\pi}^{4} \Lambda_{\chi}} \sum_{\pi\{i,j,k\}} \delta_{r}(r_{ij}) \delta_{r}(r_{jk})$$

$$V_{D} \sim c_{D} \sum_{\pi\{i,j,k\}} \left[\frac{m_{\pi}^{2}}{4\pi} \sum_{\pi\{i,j,k\}} \delta_{r}(r_{ij}) X_{ik}(r_{jk}) - \sigma_{i} \cdot \sigma_{k} \delta_{r}(r_{ij}) \delta_{r}(r_{jk}) \right]$$

$$V_{C} \sim c_{3} \sum_{\pi\{i,j,k\}} \left[X_{ij}(r_{ij}) X_{jk}(r_{jk}) + \frac{4\pi}{m_{\pi}^{2}} X_{ik}(r_{ij}) \delta_{r}(r_{jk}) + \frac{4\pi}{m_{\pi}^{2}} X_{ik}(r_{jk}) \delta_{r}(r_{ij}) + \left(\frac{4\pi}{m_{\pi}^{2}}\right)^{2} \sigma_{i} \cdot \sigma_{k} \delta_{r}(r_{ij}) \delta_{r}(r_{jk}) \right] + V(c_{1})$$

local 3N, see also Navratil, Few Body Syst. (2007)

QMC results with 3N TPE

IT, Gandolfi, Gezerlis, Schwenk, PRC (2016)

- > Only three-nucleon two-pion exchange $\sim c_1$ and c_3
- > Auxiliary-field diffusion Monte Carlo:
 - NN + 3N forces
 - \triangleright $R_0 = 1.0 1.2 \text{ fm}$
 - $ightarrow R_{3N} = 1.0 1.2 \text{ fm}$
- ➤ TPE 3N contributions ≈ 1 2 MeV, smaller than for nonlocal regulators
- 3N cutoff dependence small
- ✓ Variation with $c_1 = -(0.37 0.81)$ and $c_3 = -(2.71 3.40)$ smaller 0.3 MeV

Krüger, IT Hebeler, Schwenk, PRC (2013)

QMC results with 3N TPE

IT, Gandolfi, Gezerlis, Schwenk, PRC (2016)

- > Only three-nucleon two-pion exchange $\sim c_1$ and c_3
- > Auxiliary-field diffusion Monte Carlo:
 - NN + 3N forces
 - $R_0 = 1.0 1.2 \text{ fm}$
 - $R_{3N} = 1.0 1.2 \text{ fm}$
- ➤ TPE 3N contributions ≈ 1 2 MeV, smaller than for nonlocal regulators
- 3N cutoff dependence small
- Variation with $c_1 = -(0.37 0.81)$ and $c_3 = -(2.71 3.40)$ smaller 0.3 MeV

Krüger, IT Hebeler, Schwenk, PRC (2013)

QMC results with 3N TPE

IT, Gandolfi, Gezerlis, Schwenk, PRC (2016)

- Only three-nucleon two-pion exchange $\sim c_1$ and c_3
- Auxiliary-field diffusion Monte Carlo:
 - NN + 3N forces
 - $R_0 = 1.0 1.2 \text{ fm}$
 - $ightarrow R_{3N} = 1.0 1.2 \text{ fm}$
- ➤ TPE 3N contributions ≈ 1 2 MeV, smaller than for nonlocal regulators
- 3N cutoff dependence small
- ✓ Variation with $c_1 = -(0.37 0.81)$ and $c_3 = -(2.71 3.40)$ smaller 0.3 MeV

Krüger, IT Hebeler, Schwenk, PRC (2013)

Independent of exact regulator form

In the following study 3N forces in Hartree-Fock
Use the following regulators:

$$f_{\text{reg}}^{QMC} = \left(1 - \exp\left(-\frac{r_{ij}^4}{R_0^4}\right)\right) \left(1 - \exp\left(-\frac{r_{jk}^4}{R_0^4}\right)\right)$$

IT, Gandolfi, Gezerlis, Schwenk, PRC (2016)

$$f_{\text{reg}}^{MSL} = \exp\left(-\left(\frac{q_i}{\Lambda}\right)^{2n}\right)\exp\left(-\left(\frac{q_j}{\Lambda}\right)^{2n}\right)$$

Navratil, Few Body Syst. (2007)

$$f_{\text{reg}}^{MSNL} = \exp\left(-\left(\frac{k_1^2 + k_2^2 + k_3^2 - \mathbf{k_1} \cdot \mathbf{k_2} - \mathbf{k_1} \cdot \mathbf{k_3} - \mathbf{k_2} \cdot \mathbf{k_3}}{3\Lambda^2}\right)^{2n}\right)$$

U. van Kolck, PRC (1994), Epelbaum, Nogga, Glöckle, Kamada, Meißner, Witala, PRC (2002)

- Local 3N TPE energies smaller than for nonlocal regulators already at HF level
- Also true for local momentum-space regulators
- Shorter-range parts can add sizeable contributions

- > Local 3N TPE energies smaller than for nonlocal regulators already at HF level
- Also true for local momentum-space regulators
- Shorter-range parts can add sizeable contributions

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators

Focus on V_E :

 $E_1/E_{\tau_i\cdot\tau_i}$

Two problems:

1)

2)

Local 3N forces in HF

Shorter-range parts can add sizeable contributions at HF

Local 3N TPE energies smaller than for nonlocal regulators

\succ 6 different operator structures for V_E :

$$\beta_1 \cdot 1 + \beta_2 \sigma_i \cdot \sigma_j + \beta_3 \tau_i \cdot \tau_j + \beta_4 \sigma_i \cdot \sigma_j \tau_i \cdot \tau_j + \beta_5 \sigma_i \cdot \sigma_j \tau_j \cdot \tau_k + \beta_6 \sigma_i \times \sigma_j \cdot \sigma_k \tau_i \times \tau_j \cdot \tau_k$$

Epelbaum, Nogga, Gloeckle, Kamada, Meißner, Witala, PRC (2002)

- Linearly dependent after antisymmetrization if regulator is symmetric in particle labels
- Not true for local regulators \rightarrow see talk by Joel Lynn

Ratio

Dyhdalo, Furnstahl, Hebeler, IT, in preparation

February 23, 2016

Local 3N forces in HF

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators

• 6 different operator structures for V_E :

$$\beta_1 \cdot 1 + \beta_2 \sigma_i \cdot \sigma_j + \beta_3 \tau_i \cdot \tau_j + \beta_4 \sigma_i \cdot \sigma_j \tau_i \cdot \tau_j + \beta_5 \sigma_i \cdot \sigma_j \tau_j \cdot \tau_k + \beta_6 \sigma_i \times \sigma_j \cdot \sigma_k \tau_i \times \tau_j \cdot \tau_k$$

Epelbaum, Nogga, Gloeckle, Kamada, Meißner, Witala, PRC (2002)

- Linearly dependent after antisymmetrization if regulator is symmetric in particle labels
- ➢ Not true for local regulators
 → see talk by Joel Lynn

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators
- Example: two-body regulators at HF:

$$f_{\text{reg}}^{MSL} = \exp\left(-\left(\frac{q}{\Lambda}\right)^{2n}\right), \qquad f_{\text{reg}}^{MSNL} = \exp\left(-2\left(\frac{k}{\Lambda}\right)^{2n}\right)$$

Direct term:

$$q = k - k' = 0 \rightarrow f_{\text{reg}}^{MSL} = 1, \qquad f_{\text{reg}}^{MSNL} = \exp\left(-2\left(\frac{k}{\Lambda}\right)^{2n}\right)$$

Exchange term:

$$q = k - k' = 2k \rightarrow f_{\text{reg}}^{MSL} = \exp\left(-\left(\frac{2k}{\Lambda}\right)^{2n}\right), f_{\text{reg}}^{MSNL} = \exp\left(-2\left(\frac{k}{\Lambda}\right)^{2n}\right)$$

Effective cutoff smaller for local regulators and spin-dependent interactions!

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators
- Example: two-body regulators at HF:

Dyhdalo, Furnstahl, Hebeler, IT, in preparation

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators
- Example: two-body regulators at HF:

3m C_s Direct $k_{\rm F} = 1.0 \, {\rm fm}^{-1}$ $k_{\rm F} = 1.4 \, {\rm fm}^{-1}$ $k_{\rm F} = 1.8 \, {\rm fm}^{-1}$ $\Lambda_{\rm NN} = 2.0 \ {\rm fm}^{-1}$ 2.5m **MSNL** $R_0 = 1.2 \text{ fm}$ QMC Integrand Magnitude n = 2MSL 2m (a) 1m 500µ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0 0.4 0.6 0.8 1 $|\mathbf{k}| / k_{\rm F}$ $|{\bf k}| / k_{\rm F}$ $|{\bf k}| / k_{\rm F}$ Dyhdalo, Furnstahl, Hebeler, IT, in preparation

Interaction phase space for C_S direct term

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators
- Example: two-body regulators at HF:

Interaction phase space for C_S exchange term

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators
- Example: two-body regulators at HF:

Interaction phase space for OPE exchange term

February 23, 2016

Local 3N forces in HF

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators
- > Now 3N:

Interaction phase space for 3N regulators

Two problems:

- 1) Shorter-range parts can add sizeable contributions at HF
- 2) Local 3N TPE energies smaller than for nonlocal regulators
- > Example: two-body regulators at 2nd order:

Closing the circle

Comparing to N³LO calculation:

Local N²LO band includes:

- NN cutoff variation
- > 3N cutoff variation \rightarrow negligible
- ➤ Uncertainties in the 3N couplings
 → small
- \blacktriangleright Many-body uncertainty \rightarrow negligible

BUT:

- Local regulators lead to less repulsion
- Additional contributions due to shorter-range 3N contributions

Summary

- Local chiral potentials up to N²LO including NN and 3N forces
- Local 3N two-pion-exchange contributions smaller than for nonlocal 3N forces
- Shorter-range parts can add sizeable contributions
- Different short-range operator structures lead to different results

More information on V_D and V_E :

see talk by Joel Lynn :

"Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-Alpha Scattering, and Neutron Matter "

Important task for the future:

- Understanding of sensitivity on regularization scheme
- need to improve local regulators to minimize artifacts

Thanks

Thanks to my collaborators:

- Technische Universität Darmstadt:
 K. Hebeler, J. Lynn, A. Schwenk
- Ohio State University:
 A. Dyhdalo, D. Furnstahl
- Universität Bochum:
 E. Epelbaum
- Los Alamos National Laboratory:
 J. Carlson, S. Gandolfi
- University of Guelph:
 A. Gezerlis
- Forschungszentrum Jülich:
 A. Nogga

European Research Council Established by the European Commission

BACKUP

Phaseshifts for local potentials

Hebeler, Nogga, Schwenk, PRC (2014)

Benchmark

Gezerlis, IT, Epelbaum, Freunek, Gandolfi, Hebeler, Nogga, Schwenk, PRC (2014)

Many-body perturbation theory:

- > Excellent agreement with QMC for low-cutoff potentials ($R_0 = 1.2$ fm, 400 MeV)
- Validates perturbative calculations for those interactions