Ab initio multi-irrep symplectic no-core configuration interaction calculations

A. E. McCoy ${ }^{1} \quad$ M. A. Caprio ${ }^{1} \quad$ T. Dytrych ${ }^{2}$
${ }^{1}$ University of Notre Dame
${ }^{2}$ Louisiana State University, Academy of Sciences of the Czech Republic

Why the symplectic basis?

We want to reduce the size of the basis necessary for convergence

The nuclear potential only strongly couples low $N_{\text {ex }}$ states, but the kinetic energy does strongly couple configurations at high $N_{\text {ex }}$ to low $N_{\text {ex }}$ states. To obtain converged results, the basis must include these high $N_{\text {ex }}$ configurations.

- $\operatorname{Sp}(3, \mathbb{R})$ constains the kinetic energy operator. Selecting basis states by their symplectic irreps preselect these high $N_{\text {ex }}$ states

The nucleus is highly correlated, i.e., the wavefunctions are superpositions of many harmonic oscillator configurations.

- $\operatorname{Sp}(3, \mathbb{R})$ basis has naturally built-in correlations

SU(3)-NCSM basis

SU(3) generators

$Q_{2 M}$	Algebraic quadrupole operator
$L_{1 M}$	Orbital angular momentum

$$
\begin{array}{ccc}
\mathrm{SU}(3) & \supset & \mathrm{SO}(3) \\
(\lambda, \mu) & \kappa & L
\end{array}
$$

\otimes	\supset
$\mathrm{SU}(2)$	$S U(2)$
S	

$(\lambda, \mu) \quad \mathrm{SU}(3)$ irreducible representation (irrep) $\kappa \quad \mathrm{SU}(3)$ to $\mathrm{SO}(3)$ branching multiplicity
$L \quad$ Orbital angular momentum

References: J. P. Elliott, Proc. Roy. Soc. (London) A 245, 562 (1958). M. Harvey, in Advances in Nuclear Physics, Volume 1, edited by M. Baranger and E. Vogt (1968), Annalen der Physik Vol. 1, p. 67.

$\mathrm{Sp}(3, \mathbb{R})$ algebra

$\mathrm{Sp}(3, \mathbb{R})$ generators	
$A_{L M}^{(20)}=\frac{1}{\sqrt{2}} \sum_{i}\left(b_{i}^{\dagger} \times b_{i}^{\dagger}\right)_{L M}^{(20)}$	$\mathrm{Sp}(3, \mathbb{R})$ raising
$B_{L M}^{(02)}=\frac{1}{\sqrt{2}} \sum_{i}\left(b_{i} \times b_{i}\right)_{L M}^{(02)}$	$\mathrm{Sp}(3, \mathbb{R})$ lowering
$C_{L M}^{(11)}=\sqrt{2} \sum_{i}\left(b_{i}^{\dagger} \times b_{i}\right)_{L M}^{(11)}$	$\mathrm{SU}(3)$ generators
$H_{00}^{(00)}=\sqrt{3} \sum_{i}\left(b_{i}^{\dagger} \times b_{i}\right)_{00}^{(00)}$	HO Hamiltonian

The kinetic energy

$T_{00}=\frac{1}{2}\left(2 H_{00}^{(0,0)}-\sqrt{6} A_{00}^{(2,0)}-\sqrt{6} B_{00}^{(0,2)}\right)$
SU(3) generators
$C_{L M}^{(1,1)}=Q_{2 M} \delta_{L, 2}+\sqrt{3} L_{1 M} \delta_{L, 1}$

$\mathbf{S p}(3, \mathbb{R})$ states: $|\sigma v \omega \kappa L S J M\rangle$

$$
\begin{array}{ccccc}
\hline \mathrm{Sp}(3, \mathbb{R}) & \supset & \mathrm{U}(3) & \supset & \mathrm{SO}(3) \\
& & \\
\sigma & v & \omega & \kappa & L \\
& & & & \otimes \\
& & & & \mathrm{SU}(2) \\
& & & & \mathrm{SU}(2) \\
& & & & S \\
& & \\
&
\end{array}
$$

σ Lowest grade U(3) irrep (LGI), labels the $\operatorname{Sp}(3, \mathbb{R})$ irrep
$v \mathrm{Sp}(3, \mathbb{R})$ to $\mathrm{U}(3)$ branching multiplicity
$\omega \quad \mathrm{U}(3)$ symmetry of state in $\operatorname{Sp}(3, \mathbb{R})$ irrep
$\kappa \mathrm{U}(3)$ to $\mathrm{SO}(3)$ branching multiplicity
L Orbital angular momentum
S Spin
J Total angular momentum

$$
\begin{gathered}
\frac{\mathrm{U}(3)=\mathrm{U}(1) \otimes \mathrm{SU}(3)}{\sigma=N_{\sigma}\left(\lambda_{\sigma}, \mu_{\sigma}\right)} \\
\omega=N_{\omega}\left(\lambda_{\omega}, \mu_{\omega}\right)
\end{gathered}
$$

$\mathrm{Sp}(3, \mathbb{R})$ raising operator

$\mathrm{Sp}(3, \mathbb{R})$ raising operator relates states with different number of excited oscillator quanta $N_{\text {ex }}$.

Symplectic basis

Symplectic irrep

- Start with lowest grade U(3) irrep (LGI)
- Repeatedly act on the LGI with the $\mathrm{Sp}(3, \mathbb{R})$ raising operator

Symplectic basis

- Select a set of LGl's and their allowed spins S by, e.g., taking all LGl's with oscillator excitations $N_{\text {ex }}$ less than some $N_{\sigma, \text { max }}$
- Truncate each $\mathrm{Sp}(3, \mathbb{R})$ irrep by total number of oscillator excitations $N_{\text {max }}$

Basis dimension comparison

Basis dimensions with increasing $N_{\sigma, \text { max }}$

Constructing the Hamiltonian matrix

Inputs:

- Relative matrix elements of the potential (JISP16, chiral, etc.)

Calculating matrix elements:

- Generated indexed list of state labels $|\sigma v \omega \kappa L S J\rangle$
- Expand the LGI's in the SU(3)-NCSM basis
- Calculate $\operatorname{SU}(3)$ reduced matrix elements of small set of "unit tensor" operators between LGI's
- Recursively calculate the matrix elements between all other basis states, starting from these unit tensor reduced matrix elements

Conclusions

Current status:

- Interfacing symplectic code with LSU3shell code for LGI matrix elements

Major questions:

- What truncation of the basis will bring us closest to converged results?
- Truncating by $N_{\sigma, \text { max }}$ and $N_{\text {max }}$
- Importance truncation to identify dominant $\mathrm{Sp}(3, \mathbb{R})$ irreps
- How is convergence related to interaction?
- What can identifying dominant $\operatorname{Sp}(3, \mathbb{R})$ symmetries tell us about collective behavior?
- $\operatorname{Sp}(3, \mathbb{R})$ contains generators of monopole and quadrupole moments and deformations, orbital angular momentum and quadrupole flow dynamics
- Related to rotor-model and giant quadrupole resonance in the large oscillator quanta limit
- Overlap between clusters and symplectic symmetry (A. Dreyfuss)

SU(3)-NCSM basis: ${ }^{18} \mathrm{O}$

Advantages of a group theoretical basis

- Reduce redundancy in calculations by using, e.g., the Wigner-Eckhart theorem
- Identify non-zero matrix elements using selection rules before computation

- Reduce complexity of calculations

