Ab initio multi-irrep symplectic no-core configuration interaction calculations

A. E. McCoy¹ M. A. Caprio¹ T. Dytrych²

¹University of Notre Dame

²Louisiana State University, Academy of Sciences of the Czech Republic

A. E. McCoy, M. A. Caprio, T. Dytrych

Why the symplectic basis?

We want to reduce the size of the basis necessary for convergence

The nuclear potential only strongly couples low N_{ex} states, but the kinetic energy does strongly couple configurations at high N_{ex} to low N_{ex} states. To obtain converged results, the basis must include these high N_{ex} configurations.

Sp(3,ℝ) constains the kinetic energy operator. Selecting basis states by their symplectic irreps preselect these high N_{ex} states

The nucleus is highly correlated, i.e., the wavefunctions are superpositions of many harmonic oscillator configurations.

Sp(3,ℝ) basis has naturally built-in correlations

$$\begin{array}{rcl} \mathrm{SU}(3) &\supset & \mathrm{SO}(3) \\ (\lambda,\mu) & \kappa & L \\ & & \otimes &\supset & SU(2) \\ & & & \mathrm{SU}(2) & J \\ & & & S \end{array}$$

- (λ, μ) SU(3) irreducible representation (irrep)
 - κ SU(3) to SO(3) branching multiplicity
 - L Orbital angular momentum

SU(3) symmetry of a nucleus is obtained by:

- 1. SU(3) coupling particles within major shells. Each particle has SU(3) symmetry (N,0)where N = 2n + l.
- 2. SU(3) coupling successive shells.
- 3. SU(3) coupling protons and neutrons.

References: J. P. Elliott, Proc. Roy. Soc. (London) A 245, 562 (1958). M. Harvey, in Advances in Nuclear Physics, Volume 1, edited by M. Baranger and E. Vogt (1968), Annalen der Physik Vol. 1, p. 67.

A. E. McCoy, M. A. Caprio, T. Dytrych

$\mathrm{Sp}(3,\mathbb{R})$ generators						
$A_{LM}^{(20)} = \frac{1}{\sqrt{2}} \sum_i (b_i^{\dagger} \times b_i^{\dagger})_{LM}^{(20)}$	$\operatorname{Sp}(3,\mathbb{R})$ raising					
$B_{LM}^{(02)} = rac{1}{\sqrt{2}} \sum_i (b_i imes b_i)_{LM}^{(02)}$	$\operatorname{Sp}(3,\mathbb{R})$ lowering					
$C_{LM}^{(11)} = \sqrt{2} \sum_i (b_i^{\dagger} imes b_i)_{LM}^{(11)}$	SU(3) generators					
$H_{00}^{(00)} = \sqrt{3} \sum_i (b_i^\dagger imes b_i)_{00}^{(00)}$	HO Hamiltonian					

 $Sp(3,\mathbb{R})$ algebra

The kinetic energy

$$\overline{T_{00} = \frac{1}{2} (2H_{00}^{(0,0)} - \sqrt{6}A_{00}^{(2,0)} - \sqrt{6}B_{00}^{(0,2)})}$$

 $\frac{\text{SU(3) generators}}{C_{LM}^{(1,1)} = Q_{2M}\delta_{L,2}} + \sqrt{3}L_{1M}\delta_{L,1}$

Sp(3,ℝ) \$						
$\operatorname{Sp}(3,\mathbb{R})$	\supset	U(3)	\supset	SO(3)		
σ	v	ω	κ	L		
				\otimes	\supset	SU(2)
				SU(2)		J
				S		

- $\sigma \quad \text{Lowest grade U(3) irrep (LGI),} \\ \text{labels the Sp}(3, \mathbb{R}) \text{ irrep}$
- $v \quad \text{Sp}(3,\mathbb{R}) \text{ to U}(3) \text{ branching multiplicity}$
- ω U(3) symmetry of state in Sp(3, \mathbb{R}) irrep
- κ U(3) to SO(3) branching multiplicity
- L Orbital angular momentum
- S Spin
- J Total angular momentum

 $U(3) = U(1) \otimes SU(3)$ $\sigma = N_{\sigma}(\lambda_{\sigma}, \mu_{\sigma})$ $\omega = N_{\omega}(\lambda_{\omega}, \mu_{\omega})$

References: D. J. Rowe, Rep. Prog. Phys. 48, 1419 (1985). Y. Suzuki and K. T. Hecht, Nuc. Phys. A 455, 315 (1986).

A. E. McCoy, M. A. Caprio, T. Dytrych

$Sp(3,\mathbb{R})$ raising operator

 $Sp(3,\mathbb{R})$ raising operator relates states with different number of excited oscillator quanta N_{ex} .

A. E. McCoy, M. A. Caprio, T. Dytrych

Symplectic basis

Symplectic irrep

- Start with lowest grade U(3) irrep (LGI)
- ► Repeatedly act on the LGI with the Sp(3, ℝ) raising operator

Symplectic basis

- Select a set of LGI's and their allowed spins S by, e.g., taking all LGI's with oscillator excitations N_{ex} less than some N_{σ,max}
- Truncate each Sp(3, R) irrep by total number of oscillator excitations N_{max}

Basis dimension comparison

A. E. McCoy, M. A. Caprio, T. Dytrych

Basis dimensions with increasing $N_{\sigma, \text{max}}$

A. E. McCoy, M. A. Caprio, T. Dytrych

Constructing the Hamiltonian matrix

Inputs:

Relative matrix elements of the potential (JISP16, chiral, etc.)

Calculating matrix elements:

- Generated indexed list of state labels $|\sigma \upsilon \omega \kappa LSJ\rangle$
- Expand the LGI's in the SU(3)-NCSM basis
- Calculate SU(3) reduced matrix elements of small set of "unit tensor" operators between LGI's
- Recursively calculate the matrix elements between all other basis states, starting from these unit tensor reduced matrix elements

Conclusions

Current status:

Interfacing symplectic code with LSU3shell code for LGI matrix elements

Major questions:

- What truncation of the basis will bring us closest to converged results?
 - Truncating by $N_{\sigma,\max}$ and N_{\max}
 - ▶ Importance truncation to identify dominant $Sp(3, \mathbb{R})$ irreps
- How is convergence related to interaction?
- ▶ What can identifying dominant $Sp(3, \mathbb{R})$ symmetries tell us about collective behavior?
 - ► Sp(3, ℝ) contains generators of monopole and quadrupole moments and deformations, orbital angular momentum and quadrupole flow dynamics
 - Related to rotor-model and giant quadrupole resonance in the large oscillator quanta limit
 - Overlap between clusters and symplectic symmetry (A. Dreyfuss)

A. E. McCoy, M. A. Caprio, T. Dytrych

SU(3)-NCSM basis: ¹⁸O

A. E. McCoy, M. A. Caprio, T. Dytrych

Advantages of a group theoretical basis

- Reduce redundancy in calculations by using, e.g., the Wigner-Eckhart theorem
- Identify non-zero matrix elements using selection rules before computation

Reduce complexity of calculations

A. E. McCoy, M. A. Caprio, T. Dytrych