Green's function studies from oxygen to nickel

© Beyond energy systematics: charge \& matter radii in oxygen

V. Lapoux, VS, C. Barbieri, H. Hergert, J. D. Holt, S. R. Stroberg (to be submitted)

© Testing the performance of chiral interactions in medium-mass nuclei VS, C. Barbieri, T. Duguet, P. Navrátil (in preparation)

Vittorio Somà CEA Saclay

Set-up

© Two sets of $2 \mathrm{~N}+3 \mathrm{~N}$ chiral interactions
$\xrightarrow{\prime \prime} \rightarrow$ Conventional* ${ }^{3}$ LO $2 \mathrm{~N}(500 \mathrm{MeV})+\mathrm{N}^{3} \mathrm{LO} 3 \mathrm{~N}(400 \mathrm{MeV}) \quad[\mathrm{EM}]$
\checkmark SRG-evolved to 1.88 -2.0 fm^{-1}
[Entem \& Machleidt 2003; Navrátil 2007; Roth et al. 2012]
$\xrightarrow{\prime \prime} \rightarrow$ Unconventional* ${ }^{2}$ LO $2 \mathrm{~N}+3 \mathrm{~N}(450 \mathrm{MeV}) \quad$ [$\mathrm{NNLO}_{\text {sat }}$] [Ekström et al. 2015] \checkmark bare

* With respect to the usual reductionist strategy of ab initio calculations

Set-up

© Two sets of $2 \mathrm{~N}+3 \mathrm{~N}$ chiral interactions
$\xrightarrow{\prime \prime} \rightarrow$ Conventional* ${ }^{3}$ LO $2 \mathrm{~N}(500 \mathrm{MeV})+\mathrm{N}^{3} \mathrm{LO} 3 \mathrm{~N}(400 \mathrm{MeV}) \quad[\mathrm{EM}]$
\checkmark SRG-evolved to $1.88-2.0 \mathrm{fm}^{-1}$
[Entem \& Machleidt 2003; Navrátil 2007; Roth et al. 2012]
$\xrightarrow{\prime \prime} \rightarrow$ Unconventional* ${ }^{2}$ LO $2 \mathrm{~N}+3 \mathrm{~N}(450 \mathrm{MeV}) \quad$ [$\mathrm{NNLO}_{\text {sat }}$] [Ekström et al. 2015] \checkmark bare

* With respect to the usual reductionist strategy of ab initio calculations

Set-up

© Two sets of $2 \mathrm{~N}+3 \mathrm{~N}$ chiral interactions
$\xrightarrow{\prime \prime} \rightarrow$ Conventional* ${ }^{3}$ LO $2 \mathrm{~N}(500 \mathrm{MeV})+\mathrm{N}^{3} \mathrm{LO} 3 \mathrm{~N}(400 \mathrm{MeV}) \quad[\mathrm{EM}]$
\checkmark SRG-evolved to $1.88-2.0 \mathrm{fm}^{-1}$
[Entem \& Machleidt 2003; Navrátil 2007; Roth et al. 2012]
$" \rightarrow$ Unconventional* ${ }^{2}$ LO $2 \mathrm{~N}+3 \mathrm{~N}(450 \mathrm{MeV}) \quad$ [$\mathrm{NNLO}_{\text {sat }}$] [Ekström et al. 2015] \checkmark bare

* With respect to the usual reductionist strategy of ab initio calculations
© Different many-body approaches
" \rightarrow Self-consistent Green's functions
- Closed-shell Dyson scheme [DGF] [Schirmer et al. 1983; Cipollone, Barbieri \& Navrátil 2013; ...]
- Open-shell Gorkov scheme [GGF] [Somà, Duguet \& Barbieri 2011, ...]
m In-medium similarity renormalisation group
- Closed-shell single-reference scheme [SR-IMSRG]
- Open-shell multi-reference scheme [MR-IMSRG] [Hergert et al. 2013, ...]

Self-consistent Green's function theory

© All nucleons active, polynomial scaling (cf. CC and IMSRG)
\odot Self-energy expansion follows Algebraic Diagrammatic Construction (ADC)
\odot Gorkov scheme: use symmetry breaking (particle number) to account for pairing

> Dyson/Gorkov equation $\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)$ with $\quad \mathbf{G}(\omega)=\left(\begin{array}{ll}G^{11}(\omega) & G^{12}(\omega) \\ G^{21}(\omega) & G^{22}(\omega)\end{array}\right)$

ADC(1)

ADC(2)

ADC(3)

Self-consistent Green's function theory

Dyson/Gorkov equation

$$
\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)
$$

$$
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k *}}{\omega-\omega_{k}+\mathrm{i} \eta}+\frac{\overline{\bar{b}}_{a}^{k *} \overline{\mathcal{V}}_{b}^{k}}{\omega+\omega_{k}-\mathrm{i} \eta}\right\}
$$

with

$$
G_{a b}^{12}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{V}_{b}^{k *}}{\omega-\omega_{k}+\mathrm{i} \eta}+\frac{\overline{\mathcal{V}}_{a}^{k *} \overline{\mathcal{U}}_{b}^{k}}{\omega+\omega_{k}-\mathrm{i} \eta}\right\}
$$

Energy dependent eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

[Schirmer \& Angonoa 1989]
Energy independent eigenvalue problem

$$
\left(\begin{array}{cccc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)
$$

- Observables of A-body ground state (both $N \& Z$ even)
- Spectroscopic information on $A \pm 1$ systems

Oxygen energies and motivations

\odot EM and $\mathbf{N N L O}_{\text {sat }}$ perform similarly along O binding energies

- Comparable spread between different many-body schemes for the two interactions - Fair agreement with experiment (including drip-line)
- EM known to lead to a poor reproduction of radii

Oxygen point-proton and point-neutron radii

\odot Uncertainty from using different many-body schemes achieve is

- smaller than experimental uncertainty
o smaller than the one associated the use of different interactions
\odot Point-proton radii (deduced from (e,e) scattering) available only for stable ${ }^{16-18} \mathrm{O}$
\rightarrow matter radii?

Evaluating matter radii

\bigcirc Hadronic probe necessary

- Elastic proton scattering
- Nucleus-nucleus collisions

Modelling of the reaction mechanism needs to be under control

\odot Here matter radii are extracted from angular distributions of (\mathbf{p}, \mathbf{p}) cross sections

- (p, p) cross sections computed in the Distorted Wave Born Approximation (DWBA)
- Optical potential JLM $\quad U_{J L M}(\rho, E)=\lambda_{V} V(\rho, E)+i \lambda_{W} W(\rho, E)$
[Jeukenne, Lejeune \& Mahaux 1977]
- Incident energy
- Proton and neutron densities

Evaluating matter radii

© Matter radii evaluated as follows

1. "Experimental" densities are extracted from (e,e) for ${ }^{16-18} \mathrm{O}$
2. DWBA with "experimental" densities validate the use of JLM potential for (p, p) data
3. Skyrme densities are benchmarked on (p, p) in ${ }^{16-18} \mathrm{O}$
4. DWBA calculations with Skyrme densities are extended to neutron-rich isotopes

$\xrightarrow{\prime} \rightarrow$ uncertainty of $\mathbf{0 . 1} \mathbf{f m}$ from the use of different microscopic densities (consistent with older analyses on stable nuclei)

Oxygen matter radii: exp. vs exp.

A	16	17	18	20	22
r_{p}	$2.59(7)$	$2.60(8)$	$2.68(10)$		
$r_{m}\left(\sigma_{I}\right)$	$2.54(2)$	$2.59(5)$	$2.61(8)$	$2.69(3)$	$2.88(6)$
$r_{m}(\mathrm{p}, \mathrm{p})$	$2.60(8)$	$2.67(10)$	$2.77(10)$	$2.9(1)$	$3.0(1)$

$\bigcirc(p, p)$ analysis in agreement with (e,e) benchmarks in ${ }^{16-18} \mathrm{O}$
\odot Alternative evaluation from interaction cross section (σ_{I})

- 2001 analysis likely to underestimate systematic errors
- 2011 new experiment with ${ }^{22-23} \mathrm{O}$
[Ozawa et al. 2001]
[Kanungo et al. 2011]

Oxygen matter radii: exp. vs theory

\odot Clear improvement in absolute $\left({ }^{16} \mathrm{Or}_{\mathrm{ch}}\right.$ in $\mathrm{NNLO}_{\text {sat }}$ fit)
\bigcirc Somewhat similar N dependence

Calcium binding energies

$\odot \mathbf{N N L O}_{\text {sat }}$ corrects overbinding
© Two-neutron separation energies:

- comparable to EM for light isotopes
- drip-line pushed to higher masses
© Many-body uncertainties to be further assessed

Calcium charge radii

$\odot \mathrm{NNLO}_{\text {sat }}$: charge radii improve both in absolute and relative
© Cf. new measurements of ${ }^{49,51,52} \mathrm{Ca}$ and similar CC calculations [Garcia Ruiz et al. 2016]
\odot Parabolic behaviour between ${ }^{40} \mathrm{Ca}$ and ${ }^{48} \mathrm{Ca}$ remains a challenge
\odot Odd-even staggering? (work in progress)

Charge radii around $\mathrm{Z}=20$

© Hints of the nontrivial behaviour as a function of N and Z
๑ More delicate to disentangle effects of missing many-body correlations/interactions

Up to nickel

© Improvement seen around $\mathrm{Z}=20$ is confirmed in nickel
© Many-body convergence to be assessed with $\operatorname{ADC}(3)$ calculations

Summary

© Matter radii complement energy systematics along the oxygen chain

- (\mathbf{p}, \mathbf{p}) scattering data provides precious information for unstable isotopes
$\circ(p, p)$ evaluation of matter radii mostly inconsistent with σ_{I}
- Different many-body schemes provide consistent results
- $\mathrm{NNLO}_{\text {sat }}$ falls short in reproducing (p, p) matter radii towards the drip-line
\odot Unconventional NNLO ${ }_{\text {sat }}$ significantly improves on EM deficiencies
- Overbinding corrected
- Nuclei have the right size, isospin dependence still to be refined?
- Other observables?
- How to proceed systematically?

Appendix

Inside the Green's function

© Separation energy spectrum

$$
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\overline{\mathcal{V}}_{a}^{k *} \overline{\mathcal{V}}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\}
$$

Lehmann representation

where $\left\{\begin{aligned} & \mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\ & \mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}\left|\Psi_{0}\right\rangle\end{aligned}\right.$
and $\quad\left\{\begin{array}{l}E_{k}^{+(A)} \equiv E_{k}^{A+1}-E_{0}^{A} \equiv \mu+\omega_{k} \\ E_{k}^{-(A)} \equiv E_{0}^{A}-E_{k}^{A-1} \equiv \mu-\omega_{k}\end{array}\right.$
\odot Spectroscopic factors

$$
\begin{aligned}
& \left.S F_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}^{\dagger}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{U}_{a}^{k}\right|^{2} \\
& \left.S F_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{V}_{a}^{k}\right|^{2}
\end{aligned}
$$

[figure from J. Sadoudi]

Krylov projection

\bigcirc Multi-pivot algorithm (\# states $\sim 10 \mathrm{~N}_{\ell}$)
\odot Well converged for $\mathrm{N}_{\ell} \sim 50$
\odot Independent of $\mathrm{N}_{\max }$
© Spectral strength quickly converges around the Fermi surface

Three-body forces

๑ One- and two-body forces derived from the 3N part of the Hamiltonian
" \rightarrow Contractions with fully correlated density matrix
$\rightarrow \rightarrow$ Generalization of normal ordering

๑ Galitskii-Koltun sum rule modified to account for 3 N piece

[Carbone, Cipollone et al. 2013]

$\xrightarrow{\prime} \rightarrow$ Use of dressed propagators provides extra correlations

Particle-number variance

\odot Gorkov GF calculations break particle number symmetry $\longrightarrow \sigma_{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}$

- Breaking has two sources:

1) Reference state mixes different A
2) Green's function formalism itself explores Fock space

Odd-even systems

© Current implementation targets $\mathrm{J}^{\Pi}=0^{+}$states
$\xrightarrow{\prime} \rightarrow$ Equations simplify: j-coupled scheme, block-diagonal structure, ...

๑ Different possibilities to compute odd-even g.s. energies:
(1) From separation energies
$\xrightarrow{\prime \rightarrow} \rightarrow$ Either from A-1 or A+1

(2) From fully-paired even number-parity state
" \rightarrow "Fake" odd-A plus correction

[Duguet et al. 2001]

