

Collaborators:

- A. Calci (TRIUMF)
- J. Dohet-Eraly (TRIUMF)
- J. Langhammer (Private sector)
- P. Navrátil (TRIUMF)
- F. Raimondi (U. of Surrey)
- C. Romero-Redondo (LLNL)
- R. Roth (TU Darmstadt)
- S. Quaglioni (LLNL)

www.cea.fr

NUCLEAR STRUCTURE AND REACTIONS FROM CHIRAL INTERACTIONS

Guillaume Hupin

Progress in *Ab Initio* Techniques in Nuclear Physics, TRIUMF BC Canada, February 23th 2016.

INTRODUCTION

Nuclear astrophysics

Materials science

EQUAL TREATMENT OF BOUND AND RESONANT STATES: COUPLE NCSM AND NCSM/RGM (NCSMC)

 Methods develop in this presentation to solve the many body problem

EQUAL TREATMENT OF BOUND AND RESONANT STATES: COUPLE NCSM AND NCSM/RGM (NCSMC)

 Methods develop in this presentation to solve the many body problem

$$\Psi_{NCSMC}^{(A)} = \sum_{\lambda} c_{\lambda} |A\lambda J^{\pi}T\rangle + \sum_{\nu} \int d\vec{r} g_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \Phi_{\nu\vec{r}}^{(A-a,a)} \right\rangle$$

elastic/inelastic

EQUAL TREATMENT OF BOUND AND RESONANT STATES: COUPLE NCSM AND NCSM/RGM (NCSMC)

S. Baroni, P. Navrátil and S. Quaglioni PRL110 (2013); PRC93 (2013)

 Methods develop in this presentation to solve the many body problem

 The many body <u>quantum</u> problem is best described by the superposition of both type of wave functions

$$\Psi_{NCSMC}^{(A)} = \sum_{\lambda} c_{\lambda} |A\lambda J^{\pi}T\rangle + \sum_{\nu} \int d\vec{r} g_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \Phi_{\nu \vec{r}}^{(A-a,a)} \right\rangle$$

NCSMC

COUPLED NCSMC EQUATIONS

S. Baroni, P. Navrátil and S. Quaglioni PRL110 (2013); PRC93 (2013)

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic R-matrix on Lagrange mesh

n-⁴He SCATTERING: NN VERSUS 3N INTERACTIONS

G. Hupin, J. Langhammer *et al.* PRC88 (2013); G. Hupin, S. Quaglioni and P. Navrátil, to be published in Physica ScriptaSpecial Edition - Nobel Prize '75 anniversary

n-4He scattering

Two scenarii of nuclear Hamiltonians

- The 3N interactions influence mostly the *P* waves.
- The largest splitting between *P* waves is obtained with NN+3N.

Comparison between NN+3N -ind and NN+3N at N_{max}=13 with six ⁴He states and 14 ⁵He states.

AB INITIO n-4He SCATTERING

G. Hupin, J. Langhammer *et al.* PRC88 (2013); G. Hupin, S. Quaglioni and P. Navrátil, to be published in Physica ScriptaSpecial Edition - Nobel Prize '75 anniversary

- The convergence pattern looks good.
- The experimental phase-shifts are well reproduced.

n-⁴He ELASTIC CROSS-SECTIONS

G. Hupin, S. Quaglioni and P. Navrátil, to be published as a contribution to the Special Physica Scripta Edition - 40 year anniversary - Nobel Prize '75

Comparison of the elastic cross-section between NN and NN+3N with ⁴He (g.s.)

n-⁴He elastic cross-section for NN+3N-induced, NN+3N potentials compared to expt. and ENDF evaluation.

• We obtained a better agreement with data when using NN+3N.

 The 3N force is constitutive to the reproduction of the ³/₂⁺ resonance.

PREDICTION FOR ELASTIC RECOIL DETECTION (ERD)

G. Hupin, S. Quaglioni and P. Navrátil, PRC90 (2014)

p-4He scattering

Cross-section compared to experiments focused on proton recoil analysis

NEUTRON-RICH HALO NUCLEUS ¹¹BE

In the shell model picture g.s. expected to be $J^{\pi}=1/2^{-1}$

(Z=6, N=7) ^{13}C and (Z=8, N=7) ^{15}O have $J^{\pi}{=}1/2^{-}$ g.s.

- In reality, ¹¹Be g.s. is **J^π=1/2**⁺ -- parity inversion
- Very weakly bound: E_{th}=-0.5 MeV Halo state -dominated by ¹⁰Be-n in the S-wave
- The 1/2⁻ state also bound -- only by 180 keV

Z=4 N=7

Single particle interpretation using nuclear shell model

Can we describe ¹¹Be in *ab initio* calculations?

- Continuum must be included
- Does the 3N interaction play a role in the parity inversion?

FRIUMF

p-¹⁰C SCATTERING: STRUCTURE OF ¹¹N RESONANCES

4.0060

⁹B+p

Limited information about the structure of proton rich ¹¹N – mirror nucleus of ¹¹Be halo nucleus

- Incomplete knowledge of ¹⁰C unbound excited states
- Importance of 3N force effects and continuum
- Can structure of exotic nuclei discriminate among different nuclear force models?

New experiment at ISAC TRIUMF with reaccelerated ¹⁰C

- The first ever ¹⁰C beam at TRIUMF
- Angular distributions measured at $E_{CM} \sim 4.16$ MeV and 4.4 MeV

p-10C SCATTERING: STRUCTURE OF 11N RESONANCES

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al. with IRIS collaboration, in preparation

TRIUMF

NCSMC calculations with chiral NN+3N [N³LO NN+N²LO 3NF(400), NNLOsat]

- ¹⁰C: 0⁺, 2⁺, 2⁺ NCSM eigenstates
- ¹¹N: \geq 4 (π =-1= and \geq 3 (π =+1) NCSM eigenstates

p-¹⁰C phase shifts with NN+3N (Λ =400)

14

¹⁰C+p

p-10C SCATTERING: STRUCTURE OF 11N RESONANCES

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al. with IRIS collaboration, in preparation

FROM RESEARCH TO INDUSTRY p-10C SCATTERING: STRUCTURE OF 11N RESONANCES A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al. with IRIS collaboration, in preparation **IRIS** collaboration: **FRIUMF** Area where 3N force effect can be observed A. Kumar, R. Kanungo, A. Sanetullaev et al. 180 180 ¹⁰C+p 10 'C+p 150 150 ⁶P_{5/2} ²P_{1/2} ^{2}P ²Р_{3/>} P 120 120 ^{2}P 90 90 δ [deg] δ [deg] $3/2^{+}$ 60 60 30 30 $3/2^{+}$ chiral NN chiral NN+3NF400 -30 -30 -60L -60L 4 E_{kin} [MeV] E_{kin} [MeV] 2 3 5 6 3 6 p-¹⁰C $p^{-10}C$ E_{kin}=4.16 MeV Ekin=4.4 MeV 100 100 NCSMC NCSMC dS/dW [mb/sr] ds/dW [mb/sr] 10 chiral NN 10 chiral NN chiral NN+3NF400 chiral NN+3NF400 120 O_{CM} [deg] 60 90 120 150 180 60 90 150 180 Q_{CM} [deg]

16

STRUCTURE OF ¹¹Be FROM CHIRAL NN+3N FORCES

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al. with IRIS collaboration, in preparation

RIUMF

NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400)

- ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates
 - ¹¹Be: ≥ 6 (π =-1) and ≥ 3 (π =+1) NCSM eigenstates

Cez

¹¹Be WITHIN NCSMC: DISCRIMINATION AMONG CHIRAL NUCLEAR FORCES

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al. with IRIS collaboration, in preparation

p-10C SCATTERING: STRUCTURE OF 11N RESONANCES

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al. with IRIS collaboration, in preparation

⁴He(*d*,*d*)⁴He COMPARISON OF INTERACTION

G. Hupin, S. Quaglioni and P. Navrátil, PRL114 (2015)

potential

with

NN+3N-induced, NN+3N-full

 $\lambda = 2.0 \text{ fm}^{-1}$.

90 90 45 -45 -45 -90 -135 0 $2 E_{kin}$ [MeV] 4 6

 ${}^{3}D_{3}$

180

135

- Best results in a decent model space (N_{max}=11).
- The ${}^{3}D_{3}$ resonance is reproduced but the ${}^{3}D_{2}$ and ${}^{3}D_{1}$ resonance positions are underestimated.
- The 3N force corrects the *D*-wave resonance positions by increasing the spin-orbit splitting.
- There is room for improvements.

⁶Li SPECTRUM, NCSMC VS NCSM/RGM

G. Hupin, S. Quaglioni and P. Navrátil, PRL114 (2015)

Comparison between NCSMC vs NCSM

- The 3N force is essential to get the correct ⁶Li g.s. energy and splitting between the 3⁺ and 2⁺ states.
- The ⁶Li g.s. is well reproduced.
- There is room for improvements, in particular regarding the 3⁺ state.

⁴He(*d*,*d*)⁴He CROSS-SECTION G. Hupin, S. Quaglioni and P. Navrátil, PRL114 (2015)

The bulk of the cross section is well reproduced for a large set of kinetic energy and scattering angle.

⁴He(*d*, ⁴He)*d* CROSS-SECTION G. Hupin, S. Quaglioni and P. Navrátil, PRL114 (2015)

Comparison to experiment of the *d*-⁴He elastic recoil differential cross section of NCSMC with NN+3N potential at λ =2.0 fm⁻¹.

The 3⁺ resonance is missed. As its width is very narrow, it has little impact and the bulk of the crosssection.

FIRST STEPS TOWARDS AB INITIO CALCULATIONS OF FUSION WITH NCSM/RGM

P. Navrátil, S. Quaglioni, PRL108 (2012)

³H(*d*,*n*)⁴He astrophysical S-factor **BR51** $d^{+3}H \rightarrow n^{+4}He$ (a)**AR52** 30 CO52 AR54 He55 25 **GA56** b **BA57** S-factor [MeV GO61 20KO66 MC73 **MA75** JA 84 BR87 0d*+0d'* 7d*+5d'* Evidence of 9d*+5d' incomplete model 100 1000 (nuclear force) $E_{\rm kin}$ [keV]

NCSM/RGM results for the ${}^{3}\text{He}(d,n){}^{4}\text{He}$ astrophysical S-factor compared to beamtarget measurements.

Calculated S-factors converge with the inclusion of the virtual breakup of the deuterium, obtained by means of excited ${}^{3}S_{1}-{}^{3}D_{1}$ (*d*^{*}) and ${}^{3}D_{2}$ (*d*^{'*}) pseudo-states.

Incomplete nuclear interaction: requires 3N force (SRG-induced + "real")

FIRST STEPS TOWARDS AB INITIO CALCULATIONS OF FUSION

G. Hupin, S. Quaglioni, P. Navrátil work in progress

d-t fusion

n-⁴He phaseshifts with NCSMC and the chiral two- and three-nucleon force

 λ =2.0 fm⁻¹, with eigenstates of ⁵He at N_{max} =9.

- Perspective to provide accurate t(d,n)⁴He fusion cross-section for the effort toward earth-based fusion energy generation.
- The *d*-t fusion is known to be very sensitive to the spin-orbit and isospin part of the nuclear interaction.

FIRST STEPS TOWARDS AB INITIO CALCULATIONS OF FUSION

G. Hupin, S. Quaglioni, P. Navrátil work in progress

Towards d-t fusion with NCSMC: comparison between effective interactions

 $n+^{4}$ He(g.s.) phase shifts with NN+3N potential, with eigenstates of ⁵He.

 $\lambda = 1.7 \text{ fm}^{-1} \text{ and } \hbar\Omega = 16 \text{ MeV}$

N_{max}	${}^{5}\text{He} \left(\frac{3}{2}^{+}\right)$	$^{4}\mathrm{He}$	$^{3}\mathrm{H}$	d
6	-5.1574	-28.1739	-8.2909	-2.0404
8	-7.2529	-28.3677	-8.3893	-2.092
10	-8.1861	-28.4348	-8.4455	-2.1654
12			-8.4546	-2.1781
∞	-8.9373	-28.4693	-8.4565	-2.224
		I		I
	$\lambda = 2.0 \text{ fm}^3$	$^{-1}$ and $\hbar\Omega$	= 20 MeV	7
N _{max}	$\lambda = 2.0 \text{ fm}$ ⁵ He $\left(\frac{3}{2}^{+}\right)$	$^{-1}$ and $\hbar\Omega$ ^{4}He	$= 20 \text{ MeV}$ ^{3}H	/ d
N _{max} 6	$\lambda = 2.0 \text{ fm}$ $^{5}\text{He} (\frac{3}{2}^{+})$ $^{-1.9037}$	$ \begin{array}{c} ^{-1} \text{ and } \hbar\Omega \\ ^{4}\text{He} \\ ^{-27.7923} \end{array} $	= 20 MeV ^{3}H -8.0971	d -1.9199
N _{max} 6 8	$\lambda = 2.0 \text{ fm}$ $^{5}\text{He} \left(\frac{3}{2}^{+}\right)$ $^{-1.9037}$ $^{-4.9122}$	$^{-1}$ and $\hbar\Omega$ ^{4}He $^{-27.7923}$ $^{-28.2341}$	$= 20 \text{ MeV}$ ^{3}H $^{-8.0971}$ $^{-8.2721}$	d -1.9199 -1.9633
N _{max} 6 8 10	$\lambda = 2.0 \text{ fm}$ $5 \text{He} \left(\frac{3}{2}^{+}\right)$ -1.9037 -4.9122 -6.6422	$^{-1}$ and $\hbar\Omega$ ^{4}He $^{27.7923}$ $^{28.2341}$ $^{28.4078}$	$= 20 \text{ MeV}$ ^{3}H $^{-8.0971}$ $^{-8.2721}$ $^{-8.4099}$	d -1.9199 -1.9633 -2.1172
N _{max} 6 8 10 12	$\lambda = 2.0 \text{ fm}$ ⁵ He ($\frac{3}{2}^+$) -1.9037 -4.9122 -6.6422 -7.7062	$^{-1}$ and $\hbar\Omega$ ^{4}He $^{27.7923}$ $^{28.2341}$ $^{28.4078}$ $^{28.4438}$	$= 20 \text{ MeV}$ ^{3}H $^{-8.0971}$ $^{-8.2721}$ $^{-8.4099}$ $^{-8.4387}$	d -1.9199 -1.9633 -2.1172 -2.1351

NCSM convergence of compound and cluster states.

FIRST STEPS TOWARDS AB INITIO CALCULATIONS OF FUSION

G. Hupin, S. Quaglioni, P. Navrátil work in progress

 $n+^{4}$ He(g.s.) phase shifts with NN+3N potential, with eigenstates of ⁵He.

$\lambda = 1.7$	$\rm fm^{-1}$	and	$\hbar\Omega =$	16	MeV
-----------------	---------------	-----	-----------------	----	-----

	_		_					
$N_{\rm max}$	${}^{5}\text{He}\left(\frac{3}{2}^{+}\right)$	$^{4}\mathrm{He}$	$^{3}\mathrm{H}$	d				
6	42.29	1.04	1.96	8.26				
8	18.85	0.36	0.80	5.94				
10	8.41	0.12	0.13	2.63				
12	-	-	0.02	2.06				
$\lambda = 2.0 \text{ fm}^{-1} \text{ and } \hbar\Omega = 20 \text{ MeV}$								
N _{max}	${}^{5}\text{He}\left(\frac{3}{2}^{+}\right)$	$^{4}\mathrm{He}$	$^{3}\mathrm{H}$	d				
6	78.70	2.38	4.25	13.67				
8	45.04	0.83	2.18	11.72				
10	25.68	0.22	0.55	4.80				
12	13.78	0.09	0.21	4.00				
Relative error (%) with respect to								
converged value								

A smaller frequency allows us to capture the dilute nature of the $3/2^+$ resonance.

CONCLUSIONS AND OUTLOOK

Evolution of stars, birth, main sequence, death

We are extending the *ab initio* NCSM/RGM approach to describe low-energy reactions with two- and three-nucleon interactions.

We are able to describe:

- Nucleon-nucleus collisions with NN+3N interaction
- Deuterium-nucleus collisions with NN+3N interaction as the n-n
- NCSMC for single- and two-nucleon projectile

Work in progress:

- Fusion reactions with our best complete *ab initio* approach
- The present NNN force is "incomplete", need to go to N³LO