

Laboratoire national canadien pour la recherche en physique nucléaire

et en physique des particules

Electromagnetic transitions within the NCSMC

Jérémy Dohet-Eraly (TRIUMF)

Progress in Ab Initio Techniques in Nuclear Physics, TRIUMF, Vancouver, BC, Canada, February 24th, 2015.

Accelerating Science for Canada

Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Electromagnetic transitions...

...between bound states...

Photoemission

Photoabsorption

... to study the nuclear structure

Electromagnetic transitions...

...between a continuum state and a bound state ...

- ... to study the nuclear structure ... to understand the stellar nucleosynthesis

Electromagnetic transitions...

...between continuum states...

Nucleus-nucleus bremsstrahlung

... to study resonance spectra ... to diagnose thermonuclear burn

Theoretical description

To describe these different transitions we $\ensuremath{\mathsf{NEED}}$

• Unified approach to describe bound and continuum states

 $\Rightarrow \Psi_{ini}$ and Ψ_{fin}

We use the No-Core Shell Model with Continuum (NCSMC) approach

 Efficient way to calculate photoemission/photoabsorption matrix elements between bound states or bound and continuum states or continuum states

 $\Rightarrow \langle \Psi_{\textit{fin}} | \mathfrak{M}^{\textit{E}}_{\lambda\mu} | \Psi_{\textit{ini}} \rangle$

Starting point

Microscopic Schrödinger equation

$$\Big(\sum_{i=1}^{A} \frac{p_{i}^{2}}{2m_{N}} + \sum_{i>j=1}^{A} v_{ij} + \sum_{i>j>k=1}^{A} v_{jjk} - T_{\text{c.m.}}\Big) |\Psi_{A}^{J^{\pi}T}\rangle = E|\Psi_{A}^{J^{\pi}T}\rangle$$

Starting point

Microscopic Schrödinger equation

Microscopic Schrödinger equation

TRIUMF

D. R. Entern and R. Machleidt, Phys. Rev. C 68, 041001 (2003) P. Navrátil, Few-Body Syst. 41, 117 (2007) S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75, 061001 (2007)

Microscopic Schrödinger equation

TRIUMF

No-core shell model (NCSM)

- Slater determinants of harmonic oscillator functions
- Exact c.m. factorization
- Short- and medium-range correlations
- Bound-state method

+NCSM/resonating group method (RGM)

• Clustering; Long-range correlations

 $|\Psi_{\Delta}^{J^{\pi}T}\rangle =$

· Bound and scattering states; reactions

$$\sum_{\nu} \int dr \ r^2 \frac{\gamma_{\nu}^{J\pi T}(r)}{r} \mathcal{A}_{\nu} \underbrace{\swarrow}_{NCSM/BGM} \overset{\mathbf{r}}{\swarrow}$$

6/30

No-core shell model (NCSM)

- Slater determinants of harmonic oscillator functions
- Exact c.m. factorization
- Short- and medium-range correlations
- Bound-state method

+NCSM/resonating group method (RGM)

- · Clustering; Long-range correlations
- · Bound and scattering states; reactions

= No-core shell model with continuum

[S. Baroni, P. Navratil, and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013).]

No-core shell model (NCSM)

- Slater determinants of harmonic oscillator functions
- Exact c.m. factorization
- Short- and medium-range correlations
- Bound-state method

+NCSM/resonating group method (RGM)

- · Clustering; Long-range correlations
- · Bound and scattering states; reactions

= No-core shell model with continuum

[S. Baroni, P. Navratil, and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013).]

NCSMC equations

• Variational amplitudes ($c_{\lambda}^{J\pi T}$ and $\gamma_{\nu}^{J\pi T}$) obtained by solving the NCSMC equations

$$\begin{pmatrix} E_{\lambda}\delta_{\lambda\lambda'} & \langle \mathbf{I}|H\mathcal{A}_{\nu}|\mathbf{O}^{\bullet}, \mathbf{O}\rangle \\ \langle \mathbf{O}^{\bullet}, \mathbf{O}|\mathcal{A}_{\nu'}H|\mathbf{O}\rangle & \langle \mathbf{O}^{\bullet}, \mathbf{O}|\mathcal{A}_{\nu'}H\mathcal{A}_{\nu}|\mathbf{O}^{\bullet}, \mathbf{O}\rangle \end{pmatrix} \begin{pmatrix} \mathbf{C} \\ \gamma \end{pmatrix} = \\ E \begin{pmatrix} \delta_{\lambda\lambda'} & \langle \mathbf{O}|\mathcal{A}_{\nu'}|\mathbf{O}\rangle & \langle \mathbf{O}^{\bullet}, \mathbf{O}|\mathcal{A}_{\nu'}\mathcal{A}_{\nu}|\mathbf{O}^{\bullet}, \mathbf{O}\rangle \\ \langle \mathbf{O}^{\bullet}, \mathbf{O}|\mathcal{A}_{\nu'}|\mathbf{O}\rangle & \langle \mathbf{O}^{\bullet}, \mathbf{O}|\mathcal{A}_{\nu'}\mathcal{A}_{\nu}|\mathbf{O}^{\bullet}, \mathbf{O}\rangle \end{pmatrix} \begin{pmatrix} \mathbf{C} \\ \gamma \end{pmatrix} = \\ \end{pmatrix}$$

- Most challenging: calculation of kernels (mostly due to A_ν)
- Scattering matrix and asymptotic normalization coefficients from matching solutions to known asymptotic with coupled-channel microscopic *R*-matrix method (MRM) on Lagrange mesh

[M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl. Phys. A 640, 37 (1998)]

MRM on a Lagrange mesh

[M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl. Phys. A 640, 37 (1998)]

[P. Descouvemont and D. Baye, Rep. Prog. Phys. 73 (2010) 036301]

TRIUMF

MRM on a Lagrange mesh

[M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl. Phys. A 640, 37 (1998)]

[P. Descouvemont and D. Baye, Rep. Prog. Phys. 73 (2010) 036301]

FRIUMF

$$|\Psi_{A}^{J^{\pi}T}\rangle = \sum_{\lambda} c_{\lambda} | \diamondsuit \rangle + \sum_{\nu} \int dr \ r^{2} \frac{\gamma_{\nu}(r)}{r} \mathcal{A}_{\nu} | \diamondsuit \rangle$$

Schematically

$$\begin{split} \langle \Psi_{I}^{J'\pi'T'} || \mathcal{M}_{\lambda}^{E} || \Psi_{I}^{J\piT} \rangle &= \sum_{\lambda\lambda'} c_{\lambda'}^{*} c_{\lambda} \langle \P || \mathcal{M}_{\lambda}^{E} || \P \rangle + \sum_{\lambda\nu'} c_{\lambda} \int dr \, r^{2} \frac{\gamma_{\nu'}^{\prime}(r)}{r} \langle \P^{*} || \mathcal{A}_{\nu'} \mathcal{M}_{\lambda}^{E} || \P \rangle \\ &+ \sum_{\lambda'\nu} c_{\lambda'}^{*} \int dr \, r^{2} \frac{\gamma_{\nu}(r)}{r} \langle \P || \mathcal{M}_{\lambda}^{E} \mathcal{A}_{\nu} || \P^{*} \P \rangle \\ &+ \sum_{\nu\nu'} \iint dr \, dr' \, r^{2} r'^{2} \frac{\gamma_{\nu'}^{*}(r)}{r} \frac{\gamma_{\nu}(r)}{r} \langle \P^{*} || \mathcal{A}_{\nu'} \mathcal{M}_{\lambda}^{E} \mathcal{A}_{\nu} || \P^{*} \P \rangle \end{split}$$

When a RGM state is included, use of

$$\mathfrak{M}_{\lambda\mu}^{E} \approx \mathfrak{M}_{\lambda\mu}^{E}(1) + \mathfrak{M}_{\lambda\mu}^{E}(2) + e\left[Z_{1}\left(\frac{A_{2}}{A}\right)^{\lambda} + Z_{2}\left(\frac{-A_{1}}{A}\right)^{\lambda}\right] r_{12}^{\lambda}Y_{\lambda\mu}(\hat{r}_{12})$$

Exact for E1 transitions!

Trick for relative term:

$$r_{12}^{\lambda}Y_{\lambda\mu}(\hat{r}_{12})\mathcal{A}_{\nu}| \textcircled{\bullet}^{r} \textcircled{\bullet}; \nu\rangle = r_{12}^{\lambda}\sum_{\tilde{\nu}} d_{\nu\tilde{\nu}}\mathcal{A}_{\tilde{\nu}}| \textcircled{\bullet}^{r} \textcircled{\bullet}; \tilde{\nu}\rangle$$

For $\mathcal{M}_{\lambda\mu}^{\mathcal{E}}(1)$ and $\mathcal{M}_{\lambda\mu}^{\mathcal{E}}(2)$, use of closure relation $\langle \bullet^{r} \bullet; \nu' || \mathcal{A}_{\nu'} \mathcal{A}_{\nu} \mathcal{M}_{\lambda}^{\mathcal{E}}(1) || \bullet^{r} \bullet; \nu \rangle = \sum_{\tilde{\nu}} \langle \bullet^{r} \bullet; \nu' |\mathcal{A}_{\nu'} \mathcal{A}_{\nu} | \bullet^{r} \bullet; \tilde{\nu} \rangle \langle \bullet^{r} \bullet; \tilde{\nu} || \mathcal{M}_{\lambda}^{\mathcal{E}}(1) || \bullet^{r} \bullet; \nu \rangle$

Trick for relative term:

$$r_{12}^{\lambda}Y_{\lambda\mu}(\hat{r}_{12})\mathcal{A}_{\nu}| \textcircled{\bullet}^{r} \textcircled{\bullet}; \nu\rangle = r_{12}^{\lambda}\sum_{\tilde{\nu}} d_{\nu\tilde{\nu}}\mathcal{A}_{\tilde{\nu}}| \textcircled{\bullet}^{r} \textcircled{\bullet}; \tilde{\nu}\rangle$$

For $\mathcal{M}_{\lambda\mu}^{E}(1)$ and $\mathcal{M}_{\lambda\mu}^{E}(2)$, use of closure relation $\langle \Phi^{\prime} \Phi; \nu^{\prime} || \mathcal{A}_{\nu^{\prime}} \mathcal{A}_{\nu} \mathcal{M}_{\lambda}^{E}(1) || \Phi^{\prime} \Phi; \nu \rangle = \sum_{\tilde{\nu}} \langle \Phi^{\prime} \Phi; \nu^{\prime} |\mathcal{A}_{\nu^{\prime}} \mathcal{A}_{\nu} | \Phi^{\prime} \Phi; \tilde{\nu} \rangle \langle \Phi^{\prime} \Phi; \tilde{\nu} || \mathcal{M}_{\lambda}^{E}(1) || \Phi^{\prime} \Phi; \nu \rangle$ Good news

Trick for relative term:

$$r_{12}^{\lambda}Y_{\lambda\mu}(\hat{r}_{12})\mathcal{A}_{\nu}| \textcircled{\bullet}^{r} \textcircled{\bullet}; \nu\rangle = r_{12}^{\lambda}\sum_{\tilde{\nu}} d_{\nu\tilde{\nu}}\mathcal{A}_{\tilde{\nu}}| \textcircled{\bullet}^{r} \textcircled{\bullet}; \tilde{\nu}\rangle$$

For $\mathcal{M}_{\lambda\mu}^{E}(1)$ and $\mathcal{M}_{\lambda\mu}^{E}(2)$, use of closure relation $\langle \Phi^{\prime} \Phi; \nu^{\prime} || \mathcal{A}_{\nu^{\prime}} \mathcal{A}_{\nu} \mathcal{M}_{\lambda}^{E}(1) || \Phi^{\prime} \Phi; \nu \rangle = \sum_{\tilde{\nu}} \langle \Phi^{\prime} \Phi; \nu^{\prime} |\mathcal{A}_{\nu^{\prime}} \mathcal{A}_{\nu} | \Phi^{\prime} \Phi; \tilde{\nu} \rangle \langle \Phi^{\prime} \Phi; \tilde{\nu} || \mathcal{M}_{\lambda}^{E}(1) || \Phi^{\prime} \Phi; \nu \rangle$

Good news

 Electromagnetic matrix elements deduced from overlap NCSMC matrix elements and NCSM matrix elements

Trick for relative term:

$$r_{12}^{\lambda}Y_{\lambda\mu}(\hat{r}_{12})\mathcal{A}_{\nu}| \textcircled{\bullet}^{r} \textcircled{\bullet}; \nu\rangle = r_{12}^{\lambda}\sum_{\tilde{\nu}} d_{\nu\tilde{\nu}}\mathcal{A}_{\tilde{\nu}}| \textcircled{\bullet}^{r} \textcircled{\bullet}; \tilde{\nu}\rangle$$

For $\mathcal{M}_{\lambda\mu}^{E}(1)$ and $\mathcal{M}_{\lambda\mu}^{E}(2)$, use of closure relation

$$\langle {}^{\bullet} \overset{\prime}{\bullet} ; \nu' || \mathcal{A}_{\nu'} \mathcal{A}_{\nu} \mathcal{M}_{\lambda}^{\mathsf{E}}(1) || {}^{\bullet} \overset{\prime}{\bullet} ; \nu \rangle = \sum_{\tilde{\nu}} \langle {}^{\bullet} \overset{\prime}{\bullet} ; \nu' |\mathcal{A}_{\nu'} \mathcal{A}_{\nu} | {}^{\bullet} \overset{\prime}{\bullet} ; \tilde{\nu} \rangle \langle {}^{\bullet} \overset{\prime}{\bullet} ; \tilde{\nu} || \mathcal{M}_{\lambda}^{\mathsf{E}}(1) || {}^{\bullet} \overset{\prime}{\bullet} ; \nu \rangle$$

Good news

- Electromagnetic matrix elements deduced from overlap NCSMC matrix elements and NCSM matrix elements
- Overlap NCSMC matrix elements already calculated for getting the bound and scattering states

Reactions

Motivations

Extra motivation

Reactions

• ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$

Motivations

Extra motivation

Reactions

• ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$

Motivations

- calculate the primordial ⁷Li abundance in the universe
- input for standard solar models to determine the fraction of pp-chain branches resulting in $^7{\rm Be}$ versus $^8{\rm B}$ neutrinos

Extra motivation

Reactions

• ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$

Motivations

- calculate the primordial ⁷Li abundance in the universe
- input for standard solar models to determine the fraction of pp-chain branches resulting in $^7{\rm Be}$ versus $^8{\rm B}$ neutrinos

Extra motivation

 Coulomb barrier strongly suppresses the capture cross sections ⇒ at low energies out of reach of the experiments

Reactions

• ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$

Motivations

- calculate the primordial ⁷Li abundance in the universe
- input for standard solar models to determine the fraction of pp-chain branches resulting in $^7{\rm Be}$ versus $^8{\rm B}$ neutrinos

Extra motivation

 Coulomb barrier strongly suppresses the capture cross sections ⇒ at low energies out of reach of the experiments

[J D-E, P. Navrátil, S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, arXiv:1510.07717 [nucl-th]]

⁷Be and ⁷Li bound-state properties

	⁷ Be			7 _{Li}		
	NCSM	NCSMC	Exp	NCSM	NCSMC	Exp
E _{3/2} - (MeV)	-0.82	-1.52	-1.587	-1.79	-2.43	-2.467
E _{1/2} - (MeV)	-0.49	-1.26	-1.157	-1.46	-2.15	-1.989
<i>r</i> _{ch} (fm)	2.375	2.62	2.647(17) ^a	2.21	2.42	2.39(3) ^b
Q (e fm ²)	-4.57	-6.14		-2.67	-3.72	-4.00(3) ^c
μ (μ_N)	-1.14	-1.16	-1.3995(5) ^a	3.00	3.02	3.256 ^d

^a W. Nortershauser et al., Phys. Rev. Lett. 102 (2009) 062503

^b C. D. Jager, H. D. Vries, and C. D. Vries, Atom. Data Nucl. Data 14 (1974) 479 ^c H.-G. Voelk and D. Fick, Nucl. Phys. A 530 (1991) 475

^d P. Raghavan, Atom. Data Nucl. Data 42 (1989) 189

Phenomenological NCSMC

NCSMC equations

RTRIUMF

- Considering E_{λ} as adjustable parameters to reproduce the bound-state and resonance energies

⁷Be spectrum

⁷Li spectrum

α +³ He phase shifts

- NCSMC calculations with SRG N³LO *NN* potential ($\lambda = 2.15 \text{ fm}^{-1}$)
- $N_{max} = 12$; $\hbar\Omega = 20$ MeV ; ³He, α ground state
- 8 (6) eigenstates with negative (positive) parity of ⁷Be

 $\mathit{Nota:}$ Recent $\alpha + ^3$ He elastic cross sections measurements at TRIUMF. Analysis in progress.

α +³ H phase shifts

- NCSMC calculations with SRG N³LO *NN* potential ($\lambda = 2.15 \text{ fm}^{-1}$)
- $N_{max} = 12; \hbar\Omega = 20 \text{ MeV}; {}^{3}\text{H}, \alpha$ ground state
- 8 (6) eigenstates with negative (positive) parity of ⁷Li

CTRIUMF

3 He $(\alpha, \gamma)^{7}$ Be and 3 H $(\alpha, \gamma)^{7}$ Li

$\alpha + {}^{3}$ He phase shifts

- NCSMC calculations with SRG N³LO *NN* potential ($\lambda = 2.15 \text{ fm}^{-1}$)
- $N_{max} = 12; \hbar\Omega = 20 \text{ MeV}; {}^{3}\text{He}, \alpha$ ground state
- 8 (6) eigenstates with negative (positive) parity of ⁷Be

&TRIUMF

3 He(α, γ) 7 Be and 3 H(α, γ) 7 Li

"Branching ratio"

Reaction

Motivations

Reaction

• $^{1}1\mathrm{Be} + \gamma \rightarrow ^{10}\mathrm{Be} + n$

Motivations

Reaction

• $^{1}1\mathrm{Be} + \gamma \rightarrow ^{10}\mathrm{Be} + n$

Motivations

· Parity inversion of the two bound states with respect to the shell model predictions

Reaction

• $^{1}1\mathrm{Be} + \gamma \rightarrow {}^{10}\mathrm{Be} + n$

Motivations

- · Parity inversion of the two bound states with respect to the shell model predictions
- one-neutron halo nucleus

¹¹Be photodisintegration

18

Preliminary!

NNLO_{sat}, $\hbar\Omega = 20 \text{ MeV}$ Cluster-model results from [De97] P. Descouvemont, Nucl. Phys. A 615 (1997) 261. Exp. data from R. Palit *et al.*, Phys. Rev. C 68 (2003) 034318.

Nucleus-nucleus bremsstrahlung

RTRIUMF

Nucleus-nucleus bremsstrahlung

- photon emission induced by a collision between two nuclei
- Part of the collision energy converted to a photon

Bremsstrahlung

Motivations

- · to describe the radiative transitions between unstable states
 - Recent measurements of "4⁺-to-2⁺" gamma transitions in ⁸Be from the $\alpha(\alpha, \alpha\alpha\gamma)$ performed at Mumbai (India). [V. M. Datar *et al.*, PRL 94 (2005) 122502] [V. M. Datar *et al.*, PRL 111 (2013) 062502]
- to describe the $t(d, n\gamma)\alpha$ radiative transfer reaction
 - perspective to diagnose plasmas in fusion experiments from this reaction
 - recent experiment at University of Rochester and at Ohio university [Y. Kim et al., PRC 85 (2012) 061601(R)]
- to describe the $\alpha + N \rightarrow \alpha + N + \gamma$ reaction
 - Possible comparison with experiment for the $\alpha + p$ bremsstrahlung
 - Preliminary step to $t(d, n\gamma)\alpha$

Special features

From a continuum state to a continuum state!

- $\bullet \ \Rightarrow$ All partial waves need to be involved
 - For each multipole, selection rules restrict only the final state.
 - At low scattering angles and/or low photon energies, high partial wave play a significant role ⇒ low convergent series (solution: Kummer's series transformation [Baye *et al.*, Nucl. Phys. A 529 (1991) 467])
- Two nuclei and one photon in the final channel \Rightarrow more complicated kinematics
- Matrix elements of the electric operators diverge!

Divergence problem

Electric operators

$$E_{\lambda} \underset{
ho o \infty}{\longrightarrow} eZ_{
m eff}
ho^{\lambda} Y_{\lambda}(\Omega_{
ho})$$

Integrand

 $\Psi_{f}(E_{f})E_{\lambda}\Psi_{i}(E_{i}) \propto [F_{l_{f}}(\rho)\cos\delta_{l_{f}} + G_{l_{f}}(\rho)\sin\delta_{l_{f}}]\rho^{\lambda}[F_{l_{i}}(\rho)\cos\delta_{l_{i}} + G_{l_{i}}(\rho)\sin\delta_{l_{i}}]$

non-decreasing oscillating function

non-decreasing oscillating function

• \Rightarrow divergence

Divergence problem

Electric operators

$$E_{\lambda} \underset{
ho o \infty}{\longrightarrow} eZ_{\mathrm{eff}}
ho^{\lambda} Y_{\lambda}(\Omega_{
ho})$$

Integrand

 $\Psi_{f}(E_{f})E_{\lambda}\Psi_{i}(E_{i}) \propto [F_{l_{f}}(\rho)\cos\delta_{l_{f}} + G_{l_{f}}(\rho)\sin\delta_{l_{f}}]\rho^{\lambda}[F_{l_{i}}(\rho)\cos\delta_{l_{i}} + G_{l_{i}}(\rho)\sin\delta_{l_{i}}]$

non-decreasing oscillating function

non-decreasing oscillating function

- $\bullet \ \Rightarrow \text{divergence}$
- Origin: *eZ*_{eff} ρ^λ Y_λ(Ω_ρ) (commonly used) is not the EXACT electric operator but a Siegert version based on the long-wavelength approximation (*k*_γ *r* ≪ 1) but *r* = ∞ for a continuum state (in a stationary approach)

Divergence problem

Electric operators

$$E_{\lambda} \underset{
ho \to \infty}{\longrightarrow} eZ_{\mathrm{eff}}
ho^{\lambda} Y_{\lambda}(\Omega_{
ho})$$

Integrand

 $\Psi_{f}(E_{f})E_{\lambda}\Psi_{i}(E_{i}) \propto [F_{l_{f}}(\rho)\cos\delta_{l_{f}} + G_{l_{f}}(\rho)\sin\delta_{l_{f}}]\rho^{\lambda}[F_{l_{i}}(\rho)\cos\delta_{l_{i}} + G_{l_{i}}(\rho)\sin\delta_{l_{i}}]$

non-decreasing oscillating function

non-decreasing oscillating function

- $\bullet \ \Rightarrow \text{divergence}$
- Origin: $eZ_{\rm eff}\rho^{\lambda}Y_{\lambda}(\Omega_{\rho})$ (commonly used) is not the EXACT electric operator but a Siegert version based on the long-wavelength approximation ($k_{\gamma}r \ll 1$) but $r = \infty$ for a continuum state (in a stationary approach)
- Solution: use of an extended Siegert theorem valid at all photon energies

[K.-M. Schmitt, P. Wilhelm, H. Arenhövel, A. Cambi, B. Mosconi, and P. Ricci, Phys. Rev. C 41, 841 (1990)]
 [JDE, D. Baye, Phys. Rev. C 88 (2013) 024602]
 [JDE, Phys. Rev. C 89 (2014) 024617]
 [JDE, D. Baye, Phys. Rev. C 90, (2014) 034611]

RIUMF

Electric operators

- Approximation: charge and current densities for free nucleons
- The Siegert electric transition multipole operators are given explicitly by

$$\begin{split} \mathcal{E}_{\lambda\mu} &= \frac{e(2\lambda+1)!!}{k_{\gamma}^{\lambda}} \sum_{j=1}^{A} \left(\frac{1}{2} - t_{j3}\right) \phi_{\lambda\mu} \left[k_{\gamma} \left(\mathbf{r}_{j} - \mathbf{R}_{\text{c.m.}}\right)\right] \\ &+ \frac{ie(2\lambda+1)!!}{2m_{N}c(\lambda+1)k_{\gamma}^{\lambda+1}} \sum_{j=1}^{A} \left\{ \left(\frac{1}{2} - t_{j3}\right) \right. \\ &\left[\chi_{\lambda\mu}(k_{\gamma}, \mathbf{r}) - (\lambda+1)\nabla\phi_{\lambda\mu}(k_{\gamma}\mathbf{r}), \mathbf{p}_{j} - \mathbf{A}^{-1}\mathbf{P}_{\text{c.m.}}\right]_{+} \\ &\left. - k_{\gamma}^{2}g_{sj}(\mathbf{r}\times\nabla)\phi_{\lambda\mu}(k_{\gamma}\mathbf{r}) \cdot \mathbf{s}_{j} \right\}_{\mathbf{r}=\mathbf{r}_{j}-\mathbf{R}_{\text{c.m.}}}. \end{split}$$

where $[a, b]_+$ is a shorthand notation for $a \cdot b + b \cdot a$, g_{sj} is the gyromagnetic factor, and

$$\chi_{\lambda\mu}(k_{\gamma}, \mathbf{r}) = \left(k_{\gamma}^{2}\mathbf{r} + \nabla \frac{\partial}{\partial r}\mathbf{r}\right)\phi_{\lambda\mu}(k_{\gamma}\mathbf{r}),$$
$$\phi_{\lambda\mu}(k_{\gamma}\mathbf{r}) = j_{\lambda}(k_{\gamma}r)Y_{\lambda\mu}(\Omega).$$

®TRIUMF Microscopic *R*-Matrix on a Lagrange mesh

$\alpha + p$ bremsstrahlung

Preliminary!

N3LO (EM) NN, N2LO(500) 3NF, $\lambda=2~{\rm fm}^{-1}, N_{max}=7,~\hbar\Omega=20~{\rm MeV}$ [GCM] JDE, Phys. Rev. C 89 (2014) 024617

Conclusion

Summary

RIUMF

- No-Core Shell model with Continuum is extended to the description of electromagnetic transitions
- Current applications: ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha, \gamma){}^{7}\text{Li}$ radiative captures, ${}^{11}\text{Be}$ photodisintegration, and $\alpha + N$ bremsstrahlung
- · Importance to reproduce the experimental thresholds and resonances
 - \Rightarrow importance of three-nuclen forces
 - $\Rightarrow NCSMC$ phenomenological

Outlook

- Include three-nucleon forces
- Other applications: ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}, t(d,n\gamma)\alpha, \ldots$

Laboratoire national canadien pour la recherche en physique nucléaire

et en physique des particules

Thank you! Merci

Collaborators

- P. Navrátil (TRIUMF)
- G. Hupin (CEA)
- S. Quaglioni (LLNL)
- W. Horiuchi (Hokkaido University)
- F. Raimondi (University of Surrey)
- A. Calci (TRIUMF)

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

TRUMF: Alberta | British Columbia | Calgar | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queers' | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Winnipeg | York

