Towards a unified precision theory of chiral nuclear forces and pion-nucleon dynamics

A. M. Gasparyan, Ruhr-Universität Bochum

in collaboration with

D. Siemens, H. Krebs, P. Reinert, E. Epelbaum, V. Bernard, Ulf-G. Meißner

Februar 23, 2016, TRIUMF

Outline

- ➔ Introduction&Motivation
- \rightarrow Fits to πN scattering
- → Recent results for NN scattering
- → Summary and Outlook

Introduction

QCD — Chiral Effective Theory — hadron dynamics

Effective Lagrangian: Low Energy Constants (LECs) $\mathcal{L}(\Psi_N, U = e^{(i\vec{\tau} \cdot \vec{\pi})/f}, D_\mu) = \mathcal{L}_\pi + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \dots$

The most general S-matrix, consistent with unitarity, analyticity, symmetries

(Weinberg '79)

➔ pions and 1 nucleon: ChPT for the amplitude

From QCD to nuclear physics

QCD — Chiral Perturbation Theory — hadron dynamics

→ pions and 1 nucleon: ChPT for the amplitude

→ 2 and more nucleons: ChPT for nuclear forces Weinberg '91

From QCD to nuclear physics

QCD — Chiral Perturbation Theory — hadron dynamics

➔ pions and 1 nucleon: ChPT for the amplitude

→ 2 and more nucleons: ChPT for nuclear forces Weinberg '91

 $\rightarrow 1/m_N$ expansion: $|\vec{p}_i| \sim M_\pi \ll m_N \longrightarrow QM$ A-body problem

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived within ChPT}}\right] |\Psi\rangle = E|\Psi\rangle$$

From QCD to nuclear physics

QCD — Chiral Perturbation Theory — hadron dynamics

➔ pions and 1 nucleon: ChPT for the amplitude

→ 2 and more nucleons: ChPT for nuclear forces Weinberg '91

 $\rightarrow 1/m_N$ expansion: $|\vec{p}_i| \sim M_\pi \ll m_N \longrightarrow QM$ A-body problem

$$\left[\left(\sum_{i=1}^{A}\frac{-\vec{\nabla}_{i}^{2}}{2m_{N}}+\mathcal{O}(m_{N}^{-3})\right)+\underbrace{V_{2N}+V_{3N}+V_{4N}+\ldots}_{\textit{derived within ChPT}}\right]|\Psi\rangle=E|\Psi\rangle$$

 \rightarrow unified description of $\pi\pi$, πN and NN

- consistent many-body forces
- → systematically improvable

Low energy constants in πN scattering

Two-Nucleon Force

Epelbaum, Krebs, Meißner '15

3-Nucleon Forces

- ➔ Longest-range contributions
- ➔ Intermediate-range contributions
- ➔ Short-range contributions

3-Nucleon Forces

- ➔ Longest-range contributions
- ➔ Intermediate-range contributions
- ➔ Short-range contributions

- Fit to data instead of partial wave analysis Wendt et al. '14, Carlsson et al. '15
- Uncertainties of parameters and correlations are better constrained (errors and correlations of the phase shifts are not always well known)

Epelbaum et al. '15

→ The novel approach to estimate the theoretical uncertainty

Theoretical errors

(uncertainty from the truncation of the chiral expansion at a given order)

 \mathcal{O}_i -observable

 $Q = \omega_{CMS} / \Lambda_b$

 $\Lambda_b\,$ - breakdown scale of the chiral expansion

 $\delta \mathcal{O}_i^{(n)} = \max(|\mathcal{O}_i^{(\text{LO})}|Q^{n-\text{LO}+1}, \{|\mathcal{O}_i^{(k)} - \mathcal{O}_i^{(j)}|Q^{n-j}\}) \quad \text{with} \quad j < k \le n$ $\delta \mathcal{O}_i^{(n)} \ge \max(\{|\mathcal{O}_i^{(k)} - \mathcal{O}_i^{(j)}|\}) \quad \text{with} \quad n \le j < k$

Theoretical errors

(uncertainty from the truncation of the chiral expansion at a given order)

 \mathcal{O}_i -observable

 $Q = \omega_{CMS} / \Lambda_b$

 $\Lambda_b\,$ - breakdown scale of the chiral expansion

 $\delta \mathcal{O}_i^{(n)} = \max(|\mathcal{O}_i^{(\text{LO})}|Q^{n-\text{LO}+1}, \{|\mathcal{O}_i^{(k)} - \mathcal{O}_i^{(j)}|Q^{n-j}\}) \quad \text{with} \quad j < k \le n$ $\delta \mathcal{O}_i^{(n)} \ge \max(\{|\mathcal{O}_i^{(k)} - \mathcal{O}_i^{(j)}|\}) \quad \text{with} \quad n \le j < k$

 $\Lambda_b \sim 600 \text{ MeV}$ - conservative estimation Epelbaum, Krebs, Meißner '15

Theoretical errors

(uncertainty from the truncation of the chiral expansion at a given order)

 \mathcal{O}_i -observable

 $Q = \omega_{CMS} / \Lambda_b$

 $\Lambda_b\,$ - breakdown scale of the chiral expansion

 $\delta \mathcal{O}_i^{(n)} = \max(|\mathcal{O}_i^{(\text{LO})}|Q^{n-\text{LO}+1}, \{|\mathcal{O}_i^{(k)} - \mathcal{O}_i^{(j)}|Q^{n-j}\}) \quad \text{with} \quad j < k \le n$ $\delta \mathcal{O}_i^{(n)} \ge \max(\{|\mathcal{O}_i^{(k)} - \mathcal{O}_i^{(j)}|\}) \quad \text{with} \quad n \le j < k$

 $\Lambda_b \sim 600 {
m MeV}$ - conservative estimation Epelbaum, Krebs, Meißner '15

 Δ -resonance?

Power counting in πN scattering

- $\Rightarrow \text{Expansion in } Q = \left\{ \frac{q}{\Lambda_b}, \frac{M_{\pi}}{\Lambda_b} \right\}$
- ightarrow Standard heavy baryon (HB) power counting: $m_N \sim \Lambda_b~$ Fettes et al. '98, '00
- → Power counting used in the chiral NN potential: $m_N \sim \Lambda_b^2/M_\pi$
- Gegelia, Japaridze '99 → Modified EOMS (Extended On-Mass-Shell) scheme: 1/m_N expansion exactly reproduces HB result.

πN phase shifts (SAID data base)

πN phase shifts

Theoretical

error bands

 Q^2

 Q^3

 Q^4

.

πN phase shifts

Theoretical error bands $- - Q^{2}$ $- - Q^{3}$ $- - Q^{4}$

Reduced χ^2 (fit up to T_{π})

Reduced χ^2

Low energy constants

	c_1	c_2	c_3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
fit to GW	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.8	1.76	-0.58	0.96
fit to KH	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26
fit to data	-1.31	1.88	-4.43	3.24	5.95	-5.64	-0.11	-11.61	0.86	-11.36	10.73	-0.66	4.47
error	0.08	0.23	0.09	0.17	0.09	0.06	0.04	0.09	0.29	0.81	0.95	0.46	0.87

GW: Arndt et al. '06 KH: Koch '86

data: GWU-SAID data base

Correlation matrix (x100) NN-counting, Q⁴

HB-NN	c_1	c_2	c_3	c_4	d_{1+2}	d_3	d_5	d_{14-15}	e_{14}	e_{15}	e_{16}	e_{17}	e_{18}
c_1		90	12	39	35	-20	-28	-26	-30	38	-78	9	-35
c_2			-31	38	41	-23	-35	-43	-24	58	-94	10	-35
c_3				3	-14	7	16	39	-1	-56	46	-5	1
c_4					94	-61	-65	-55	-29	29	-38	15	-86
d_{1+2}					-	-68	-66	-56	-26	36	-43	11	-80
d_3							-9	42	23	-24	25	-30	63
d_5								37	15	-27	36	13	45
d_{14-15}									25	-48	50	-42	66
e_{14}										-78	48	-20	31
e_{15}											-81	21	-32
e_{16}												-16	38
e_{17}													-62
_													

NN scatering, fit of chiral potential to data

Summary

- The novel approach to estimate the theoretical uncertainty from the truncation of the chiral expansion is applied to πN scattering
- → Direct fits to the low energy πN scattering data are performed using the HB-NN, HB- πN and the covariant versions of χPT
- The extracted LECs are stable and in a reasonably good agreement with the ones reported in the literature
- ➔ Preliminary results of direct fits to NN data are presented

Outlook

→ Explicit inclusion of ∆-degree of freedom is expected to improve convergence