Low energy electroweak interaction processes in A=2, 3 nuclei in pionless EFT

Hilla De-Leon Under supervision of Doron Gazit

Progress in Ab Initio Techniques in Nuclear Physics

Vancouver 2.2016

pp Fusion

- Low energy electroweak interactions in light nuclear systems (d, ³H, ³He) take part in many scenarios such as Big Bang nucleosynthesis and evolution of the Sun
- The energy generated in the Sun comes from an exothermic set of reactions, *pp* chain:

 $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e}.$

- The leading reaction (~99%) is *pp* fusion: $p + p \rightarrow d + e^+ + \nu_e$
- This reaction is the slowest reaction in the whole chain ($\tau \sim 109$ years) and therefore it determines the Sun's lifetime.
- Measurement of its cross section is impossible, so it must be calculated from the fundamental theory of physics.

Effective Field Theory

- The fundamental theory is Quantum Chromo-Dynamics (QCD), non-perturbative in the low energy regime.
- Simple theory for describing a few-nucleon system at low energies exists Effective Field Theory.
- For low energies ($q < \Lambda_{cut} = m_{\pi}$), pion can be integrate out and only nucleons are left as effective degrees of freedom.
- QCD \rightarrow EFT (π)

•
$$\mathcal{L}_{\text{effective}} = \underbrace{\mathcal{O}(1)}_{LO} + \underbrace{\mathcal{O}\left(\frac{q}{\Lambda_{cut}}, \frac{r}{a}\right)}_{NLO} + \dots +$$

• Calculation of $\langle \mu_{^{3}\text{H}} \rangle$, $\langle \mu_{^{3}\text{He}} \rangle$ in EFT(π) as well as a prediction for *pp* fusion rate.

Electroweak interaction in EFT(7t)

	EM	Weak
1-body LEC	κ_n , κ_p	g_A
1-body operator	$\sigma,\sigma\tau^0$	$ au^{+,-}$, $\sigma au^{+,-}$,
2-body operator	$L_1 s^{\dagger} d$, $L_2 d^{\dagger} d$	$L_{1A}s^{\dagger}d$
$A = 2, q \approx 0$ obs.	σ_{np} , $\langle \mu_d angle$	Λ_{pp}
$A = 3, q \approx 0$ obs.	$\langle \mu_{3H} angle, \langle \mu_{3He} angle$	$^{3}\mathrm{H}m{eta}$ decay

- There are four well measured EM obs. and two unknown 2-body LECs
- A successful prediction of EM in EFT(π) will indicate its ability to predict Λ_{pp} .
- For the first time we use A = 3 EM obs. to fix L_1 , L_2 and to predict A = 2 obs.
- Same the weak interaction: use ${}^{3}\text{H}\beta$ decay to predict Λ_{pp} .

Numerical Results

EM.

	$\langle \mu_{^{3}\mathrm{H}} \rangle$	$\langle \mu^{_3}_{\mathrm{He}} \rangle$	σ_{np}	$\langle \mu_d \rangle$	—
LO	3.088	-2.45	298.2	0.8798	LECs was calibrated
lo, Z _d	3.1	-2.4	298.2	0.8798	from A=2
Full NLO	2.980	-2.127	338.8	0.8592	LECs was calibrated
Full NLO, Z _d	2.93	-2.150	347.8	0.8547	from A=3
ΔZ_d	2%	1%	3%	1%	$Z_d = \underbrace{1}_{t} + \underbrace{\gamma_t \rho_t}_{t} + \underbrace{(\gamma_t \rho_t)^2}_{t}$
Exp data	2.9789	-2.12762	334.2 ± 0.5	0.8574	$LO NLO N^{2}LO$ $Z = 1 \pm 7 = 1 \pm 0 \pm 0$
ΔExp	≲ 1%	≲ 1%	≲ 4%	≲ 0.3%	$LO \qquad NLO \qquad N^2LO$

Weak:

We compare to Marcucci et al, pure Coulomb χ EFT S-calculation, with the same ³H decay rate & g_A values and the same $\langle F \rangle$ value.

$S_{pp}^{\chi EFT}$ (³ S ₁ , pure Coulomb)	$4.02 \pm 0.01 \cdot 10^{-23} \text{MeV} \cdot fm^2$
$S_{pp}^{EFT}(\mathbf{r})(0)$	$3.90 \cdot 10^{-23} \mathrm{MeV} \cdot fm^2$
$S_{pp}^{EFT(\mathbf{A})}(0), Z_d$	$4.16 \cdot 10^{-23} \mathrm{MeV} \cdot fm^2$

+...

H. D and D. Gazit. In preparation, . H-W. Grießhamme 2004, L.E. Marcucci et al 2013

Summery

- EFT(\not{t}) consistently predict A = 2,3 EM $q \approx 0$ observables up to NLO with O(1%) accuaracy
- We determine the pp fusion rate with reliable uncertainty estimate.
- Our prediction:

 $S_{pp}^{EFT}(\mathbf{f})(0)_{g_{A}=1.2695} = 4.02 \pm_{theo(range)} 0.14 \pm_{g_{A}(1\sigma)} 0.07 \pm_{^{3}H(1\sigma)} 0.04 \cdot 10^{-23} \text{MeV} \cdot fm^{2}$ $S_{pp}^{EFT}(\mathbf{f})(0)_{g_{A}=1.275} = 4.16 \pm_{theo(range)} 0.14 \pm_{g_{A}(1\sigma)} 0.07 \pm_{^{3}H(1\sigma)} 0.04 \cdot 10^{-23} \text{MeV} \cdot fm^{2}$

- Better determination of g_A and ³H half-life are needed to reduce the error-bar.
- N^2LO can reduce the theoretical uncertainty significantly, to less then 1%.