Fluorine isotope systematics: *ab initio* vs phenomenological analyses

Bruce R. Barrett University of Arizona, Tucson

Arizona's First University.

TRIUMF Workshop

February 24, 2016

COLLABORATORS

Erdal Dikmen, Suleyman Demirel U., Isparta, Turkey Michael Kruse, Lawrence Livermore National Laboratory Alexander Lisetskiy, Mintec, Inc., Tucson Pieter Maris, Iowa State University Petr Navratil, TRIUMF, Vancouver, BC, Canada A. M. Shirokov, Lomonosov Moscow State U. Ionel Stetcu, Los Alamos National Laboratory James P. Vary, Iowa State University

OUTLINE

I. Overview of the *Ab Initio* Shell Model with a Core Approach

II. Results:a.) General sd-shellb.) Fluorine isotopes

III. Summary/Outlook

I. Overview of the *Ab Initio* Shell Model with a Core Approach

PHYSICAL REVIEW C 78, 044302 (2008)

Ab-initio shell model with a core

A. F. Lisetskiy,^{1,*} B. R. Barrett,¹ M. K. G. Kruse,¹ P. Navratil,² I. Stetcu,³ and J. P. Vary⁴ ¹Department of Physics, University of Arizona, Tucson, Arizona 85721, USA ²Lawrence Livermore National Laboratory, Livermore, California 94551, USA ³Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ⁴Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA (Received 20 June 2008; published 10 October 2008)

We construct effective two- and three-body Hamiltonians for the *p*-shell by performing $12\hbar\Omega$ *ab initio* no-core shell model (NCSM) calculations for A = 6 and 7 nuclei and explicitly projecting the many-body Hamiltonians onto the $0\hbar\Omega$ space. We then separate these effective Hamiltonians into inert core, one- and two-body contributions (also three-body for A = 7) and analyze the systematic behavior of these different parts as a function of the mass number *A* and size of the NCSM basis space. The role of effective three- and higher-body interactions for A > 6 is investigated and discussed.

DOI: 10.1103/PhysRevC.78.044302

PACS number(s): 21.10.Hw, 21.60.Cs, 23.20.Lv, 27.20.+n

P. Navratil, M. Thoresen and B.R.B., Phys. Rev. C 55, R573 (1997)

Effective interaction in a projected model space $H\Psi_{\alpha} = E_{\alpha}\Psi_{\alpha}$ where $H = \sum_{i=1}^{A} t_i + \sum_{i\leq j}^{A} v_{ij}$. $\mathcal{H}\Phi_{\beta} = E_{\beta}\Phi_{\beta}$ $\Phi_{\beta} = P\Psi_{\beta}$

P is a projection operator from S into S

$$\langle \tilde{\Phi}_{\gamma} | \Phi_{\beta} \rangle = \delta_{\gamma\beta}$$

 $\mathcal{H} = \sum_{\beta \in S} | \Phi_{\beta} \rangle E_{\beta} \langle \tilde{\Phi}_{\beta} |$

FORMALISM

1. Perform a large basis NCSM for a core + 2N system, e.g., 18^AF.

- 2. Use Okubo-Lee-Suzuki transformation to project these results into a single major shell to obtain effective 2-body matrix elements.
- 3. Separate these 2-body matrix elements into a core term, singleparticle energies and residual 2-body interactions, i.e., the standard input for a normal Shell Model calculation.
- 4. Use these values for performing SM calculations in that shell.

II. Results: a.) sd-shell nuclei

Phys. Rev. C 91, 064301 (2015)

Ab initio effective interactions for sd-shell valence nucleons

E. Dikmen,^{1,2,*} A. F. Lisetskiy,^{2,†} B. R. Barrett,^{2,‡} P. Maris,^{3,§} A. M. Shirokov,^{3,4,5,¶} and J. P. Vary^{3,**}

 ¹Department of Physics, Suleyman Demirel University, Isparta, Turkey
 ²Department of Physics, University of Arizona, Tucson, Arizona 85721
 ³Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011
 ⁴Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
 ⁵Pacific National University, 136 Tikhookeanskaya st., Khabarovsk 680035, Russia (Dated: February 3, 2015)

We perform *ab initio* no core shell model calculations for A = 18 and 19 nuclei in a $4\hbar\Omega$, or $N_{\rm max} = 4$, model space using the effective JISP16 and chiral N3LO nucleon-nucleon potentials and transform the many-body effective Hamiltonians into the $0\hbar\Omega$ model space to construct the A-body effective Hamiltonians in the *sd*-shell. We separate the A-body effective Hamiltonians with A = 18 and A = 19 into inert core, one- and two-body components. Then, we use these core, one- and two-body components to perform standard shell model calculations for the A = 18 and A = 19 systems with valence nucleons restricted to the *sd*-shell. Finally, we compare the standard shell model results in the $0\hbar\Omega$ model space with the exact no core shell model results in the $4\hbar\Omega$ model space for the A = 18 and A = 19 systems and find good agreement.

ArXiv: Nucl-th 1502.00700

Empirical Single-Particle Energies

Input: The results of N_max = 4 and hw = 14 MeV NCSM calculations

TABLE II:	Proton	and n	eutron	singl	e-particle	energ	gies (in
MeV) for J	ISP16 eff	fective	interac	tion	obtained	for th	le mass
of $A = 18$ as	nd $A = 1$	19.					

	A = 18			A = 19			
	$E_{\rm cor}$	$r_{e} = -115.$	529	$E_{ m co}$	$_{\rm re} = -115$.319	
j_i	$\frac{1}{2}$	<u>5</u> 2	3 2	$\frac{1}{2}$	5 2	3 2	
$\epsilon_{j_i}^n$	-3.068	-2.270	6.262	-3.044	-2.248	6.289	
$\epsilon^p_{j_i}$	0.603	1.398	9.748	0.627	1.419	9.774	

TABLE III: Proton and neutron single-particle energies (in MeV) for chiral N3LO effective interaction obtained for the mass of A = 18 and A = 19.

	A = 18			A = 19			
	$E_{\rm cor}$	e = -118.	469	$E_{\rm co}$	$r_{\rm re} = -118$.306	
j_i	$\frac{1}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	<u>5</u> 2	$\frac{3}{2}$	
$\epsilon_{j_i}^n$	-3.638	-3.042	3.763	-3.625	-3.031	3.770	
$\epsilon^p_{j_i}$	0.044	0.690	7.299	0.057	0.700	7.307	

$$A = 18$$

A = 19

Coupled Cluster, E_core: -130.462 Idaho NN N3LO + 3N N2LO -130.056 from G.R. Jansen et al. PRL 113, 142502 (2014)

IM-SRG, E_core:-130.132-129.637from H. HergertIdaho NN N3LO + 3N N2LOprivate comm.

No-Core Shell-Model Approach

Next, add CM harmonic-oscillator Hamiltonian

$$H_{CM}^{HO} = \frac{\vec{P}^2}{2Am} + \frac{1}{2}Am\Omega^2\vec{R}^2; \quad \vec{R} = \frac{1}{A}\sum_{i=1}^{A}\vec{r}_i, \quad \vec{P} = Am\vec{R}$$

To H_A , yielding

$$H_{A}^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \underbrace{\sum_{i< j=1}^{A} \left[V_{NN}(\vec{r}_{i} - \vec{r}_{j}) - \frac{m \Omega^{2}}{2A} (\vec{r}_{i} - \vec{r}_{j})^{2} \right]}_{V_{ij}}$$

V_{ii}

Defines a basis (*i.e.* HO) for evaluating

II. Results: b) Fluorine isotopes

Survey of the Fluorine isotopes

- 1. Calculate the Fluorine isotopes using the same set of effective TBMEs, which are very weakly A-dependent, e.g., those determined from the JISP16 NN interaction, to test how well they reproduce data trends.
- Assume that the effects of 3NFs can be approximated by replacing the theoretical single-particle energies with the empirical ones used by Brown & Richter* for their USDB effective interaction.
- 3. Compare our results for 18,20,22,24 F with those obtained with the USDB effective interaction and with those obtained with the IM-SRG approach** using an EFT N3LO NN plus N2LO NNN interaction.

* B.A. Brown & W.A. Richter, PRC 74, 034315 (2006) ** S.R. Stroberg et al., arXiv Nucl-th 1511.02802 (2015)

TABLE I: The single-particle energies (in MeV)	used in	n the
standard shell model calculations of F isotopes.	(n) and	d (p)
represent neutron and proton, respectively.		

j_i	$\frac{1}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	
JISP16 _{A=18} (¹⁷ O) : (n)	-3.068	-2.270	6.262	
JISP16 _{A=18} (¹⁷ F) : (p)	0.603	1.398	9.748	
USDA	-3.0612	-3.9436	1.9798	*
USDB	-3.2079	-3.9257	2.1117	*
IM-SRG (^{17}O) : (n)	-3.089	-4.643	2.940	*
IM-SRG (^{17}F) : (p)	0.255	-0.909	6.035	

k *

* B.A. Brown & W.A. Richter, PRC 74, 034315 (2006) ** S.R. Stroberg, et al., arXiv Nucl-th 1511.02802 (2015)

 $[\]langle \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \rangle$

* S.R. Stroberg, et al., arXiv Nucl-th 1511.02802

* S.R. Stroberg, et al., arXiv Nucl-th 1511.02802

SUMMARY AND OUTLOOK

- 1. All three interactions and approaches used in this study reproduced the gross trends and features of the experimental data for the 18,20,22,24 F isotopes.
- 2. Replacing the theoretical s.p. energies with the empirical ones for the USDB interaction, perhaps approximating the effects of a NNN interaction, improved, in general, the agreement with experiment.
- 3. The overall, reasonable agreement with experiment obtained using the IM-SRG approach with an EFT N3LO NN and N2LO NNN suggests that it is worthwhile to further improve our interactions and increase the size of the model space for our NCSM calculations.
- 4. The current results support the hypothesis that a single A-independent set of effective TBMEs can explain the trends in the F isotopes.

OUTLOOK: Plan to perform further calculations implementing the changes outlined above.

From few-body to many-body

Flow chart for a standard NCSM calculation

No-Core Shell-Model Approach

Start with the purely intrinsic Hamiltonian

$$H_{A} = T_{rel} + \mathcal{V} = \frac{1}{A} \sum_{i < j=1}^{A} \frac{(\vec{p}_{i} - \vec{p}_{j})^{2}}{2m} + \sum_{i < j=1}^{A} V_{NN} \left(+ \sum_{i < j < k}^{A} V_{ijk}^{3b} \right)$$

Note: There are <u>no</u> phenomenological s.p. energies!

Can use <u>any</u> NN potentials Coordinate space: Argonne V8', AV18 Nijmegen I, II Momentum space: CD Bonn, EFT Idaho

Effective Interaction

Must truncate to a finite model space

- In general, V_{ij}^{eff} is an *A*-body interaction
- We want to make an *a*-body cluster approximation

$$\mathcal{H} = \mathcal{H}^{(I)} + \mathcal{H}^{(A)} \underset{a < A}{\gtrsim} \mathcal{H}^{(I)} + \mathcal{H}^{(a)}$$

- NCSM convergence test
 - Comparison to other methods

P. Navratil, INT Seminar, November 13, 2007, online

Effective Hamiltonian for SSM How to calculate the Shell Model 2-body effective interaction:

Two ways of convergence:

1) For $P \rightarrow 1$ and fixed a: $H^{eff}_{A,a=2} \rightarrow H_A$: previous slide

2) For $a_1 \rightarrow A$ and fixed P_1 : $H_{Aa1}^{eff} \rightarrow H_A$

 $P_1 + Q_1 = P;$ P_1 - small model space; Q_1 - excluded space;

$$\mathcal{H}_{A,a_{1}}^{N_{1,\max},N_{\max}} = \frac{U_{a_{1},P_{1}}^{A,\dagger}}{\sqrt{U_{a_{1},P_{1}}^{A,\dagger}U_{a_{1},P_{1}}^{A}}} E_{A,a_{1},P_{1}}^{N_{\max},\Omega} \frac{U_{a_{1},P_{1}}^{A}}{\sqrt{U_{a_{1},P_{1}}^{A,\dagger}U_{a_{1},P_{1}}^{A}}}$$

Valence Cluster Expansion

 $N_{1,max} = 0$ space (p-space); $a_1 = A_c + a_v$; a_1 - order of cluster; A_c - number of nucleons in core; a_v - order of valence cluster;

$$\mathcal{H}_{A,a_1}^{0,N_{\max}} = \sum_k^{a_v} V_k^{A,A_c+k}$$

TABLE III: The NCSM energies (in MeV) of the lowest 28 states J_i^{π} of $^{18}{\rm F}$ calculated in $4\hbar\Omega$ model space using JISP16 and chiral N3LO NN interactions with $\hbar\Omega=14$ MeV.

J_i^{π}	Т	JISP16	J_i^{π}	Т	N3LO
11	0	-122.742	11	0	-126.964
31+	0	-122.055	31+	0	-126.214
01	1	-121.320	01+	1	-125.510
5_{1}^{+}	0	-120.329	5_{1}^{+}	0	-124.545
2_{1}^{+}	1	-119.505	2_{1}^{+}	1	-123.974
2^{+}_{2}	0	-119.011	2^{+}_{2}	0	-123.890
1_{2}^{+}	0	-118.709	1_{2}^{+}	0	-123.077
0^{+}_{2}	1	-118.410	0^{+}_{2}	1	-122.586
2_{3}^{+}	1	-117.211	2^{+}_{3}	1	-121.588
3^{+}_{2}	1	-117.035	4_{1}^{+}	1	-121.512
41	1	-117.004	3^{+}_{2}	1	-121.450
3_{3}^{+}	0	-116.765	3_{3}^{+}	0	-121.376
1_{3}^{+}	0	-113.565	1_{3}^{+}	0	-119.658
4^{+}_{2}	0	-112.314	4^{+}_{2}	0	-118.656
2_{4}^{+}	0	-111.899	2_{4}^{+}	0	-117.950
1_{4}^{+}	0	-110.357	1_{4}^{+}	0	-116.106
4_{3}^{+}	1	-109.625	4_{3}^{+}	1	-115.785
2_{5}^{+}	1	-109.292	2_{8}^{+}	1	-115.407
1_{5}^{+}	1	-108.752	3_{4}^{+}	0	-115.309
3_{4}^{+}	0	-108.706	1_{5}^{+}	1	-114.870
2_{6}^{+}	0	-108.485	2_{6}^{+}	0	-114.787
1_{6}^{+}	1	-108.055	1_{6}^{+}	1	-114.392
2_{7}^{+}	1	-108.041	3_{8}^{+}	1	-114.258
3_{5}^{+}	1	-107.874	2^{+}_{7}	1	-114.176
3_{6}^{+}	0	-101.528	3_{6}^{+}	0	-109.316
1^{+}_{7}	0	-99.946	1_{7}^{+}	0	-107.798
0^{+}_{3}	1	-99.848	2_{8}^{+}	1	-107.473
2_{8}^{+}	1	-99.607	0_{3}^{+}	1	-107.436

PRELIMINARY RESULTS

