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Overview

1. Diversify and extend the     
statistical analysis and perform a 
sensitivity analysis of input data. 

Robust parameter estimation
Three-nucleon scattering data.
The information content of heavy nuclei.
……

2. Explore alternative strategies of     
informing the model about low-
energy many-body observables. 

3. Continue efforts towards higher     
orders of the chiral expansion, and 
possibly revisit the power counting.

Delta resonances
Other regulators
Lattice QCD data
Modified PC
…
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chiral EFT is our tool to analyze the nuclear interaction

We optimize the LECs such that the chiral interactions
reproduces some calibration data, then we predict!
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UQ with N2LOsim

Simultaneous optimization is critical in order to

• find the optimal set of LECs.

• capture all relevant correlations between them.

• reduce the statistical uncertainty. 

• attain order-by-order convergence.

Within such an approach we find that statistical errors 
are, in general, small, and that the total error budget is 
dominated by systematic errors. 
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UQ with N2LOsim

Simultaneous optimization is critical in order to

• find the optimal set of LECs.

• capture all relevant correlations between them.

• reduce the statistical uncertainty. 

• attain order-by-order convergence.

Within such an approach we find that statistical errors 
are, in general, small, and that the total error budget is 
dominated by systematic errors. 

NNLOsep NNLOsim

compute the derivatives of 
your own observables wrt 
LECs, then explore: 

•cutoff variations 
•order-by-order evolution 
•LEC UQ/correlations

All 42 different sim/sep potentials, as well as the 
respective covariance matrices are available as 
supplemental material.

LO-NLO-NNLO
7 different cutoffs: 450,475,..,600 MeV
6 different NN-scattering datasets



UQ applied to proton-proton fusion

In collaboration with B. Acharya, L. Platter, B. D. Carlsson, and C. Forssen
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In the core of the Sun, energy is released through 
sequences of nuclear reactions that convert 
hydrogen into helium. The primary reaction is 
thought to be the fusion of two protons with the 
emission of a low-energy neutrino and a positron. 
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L2-rQ(2H): radial overlap 
d2B-E1A: 2B-current operator
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correlation analysis:

S(0) - E(2H): phase space
L2-r(2H): radial overlap 
L2-rQ(2H): radial overlap 
d2B-E1A: 2B-current operator

- Insofar most consistent xEFT-study of this reaction
- Correlation study indicates sound statistical analysis
- Cutoff variation not large source of error
- Statistical error in S(0) is 3 times larger than what was 

previously thought
- Central value is most likely also larger due to 

previously neglected systematic uncertainties.



converging heavy nuclei with ab initio methods

dimensionality of problem increases
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Similar ideas in nuclear physics already exist: 

Arizona group developed pionless-EFT in HO 
basis and studied UV/IR cutoff dependencies. 
Coupling constants depend on the size of the 
basis.

Haxton et al. proposed HOBET (HO-based 
effective theory). “Shell-Model” (Bloch-Horowitz) 
plus resummed kinetic energy and physics 
beyond a cutoff absorbed by contact-gradient 
expansion (like EFT contact potential)

We propose to choose (and fix) an oscillator 
space and evaluate the existing chiral EFT 
interaction operators in this space. This projection  
requires us to refit the LECs of chiral EFT 
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selected proton-neutron phase shifts of 
Idaho-N3LO(500) projected onto an 
Nmax=10, hw=40 MeV oscillator space

LUV = 700 MeV > Lc = 500 MeV
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Idaho-N3LO in the Harmonic Oscillator basis

selected proton-neutron phase shifts of 
Idaho-N3LO(500) projected onto an 
Nmax=10, hw=40 MeV oscillator space

LUV = 700 MeV > Lc = 500 MeV

OBSERVATIONS:

• There are oscillations in the phase 
shifts

• The period of this oscillation is 
approximately proportional to the IR 
cutoff

• Gauss-Laguerre (“HO-EFT”) phases 
exhibits sligthly smaller oscillations 
than the “exact” phases

• At the energies corresponding to the 
eigenenergies of the truncated 
Hamiltonian (solid dots), computed 
phases are closest to the true N3LO 
value

(N, ~!) = (10, 40MeV)

(N, ~!) = (10, 40MeV)

(N, ~!) = (10, 40MeV)
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Increasing N and/or hw gives “smaller” oscillations
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Refitting the NLO interaction to CD-Bonn phases
With goal of computing heavy nuclei, 
we design a HO-NLO interaction with:

small number of oscillator shells Nmax=10

Lower frequencies, rapid IR convergence

Lower frequencies, lower UV cutoffs

We choose hw=24 MeV, which gives:
LUV=550 MeV, L=9.6 fm. 
Considering the tail of the chiral regulator
function, we set Lc=450MeV.
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NNN-N3LO: simple cD/cE scan with Idaho-N3LO

+ rel. corr.

2π-1π2π rings 2π-contact

3H 4He
Egs -8.48 -28.32
rpt-p 1.61 1.49

<c1> -0.14 -0.69
<c3> -1.29 -6.82
<c4> 0.35 2.16
<cD> -0.39 -2.16
<cE> 0.02 0.08
<2pi> -0.40 -2.54

<2pi1pi> 1.22 6.48
<rings> -0.57 -3.38

<2pi-cont> 0.20 1.25
<rel. corr> 0.24 1.28

N2LO -1.45 -7.44
N3LO 0.68 3.09

Expectation values  (in MeV and fm)

efficient NNN-PWD enabled by K. Hebeler, H. Krebs,  et al PRC 91, 044001 (2015)



N3LO optimizations are challenging

Phase shifts from Granada analysis:  Navarro Pérez et al PRC 88, 064002 (2013)

Initialize by computing phase shifts for 105 random 
contact LEC values for each partial wave and select the 
~1000 best values and optimize. This leads to 192 
different optima (for cutoff 450 MeV) with respect to phase 
shifts. (pi-N LECs from sep-optimization)

The A=3 observables weed out several of
the S-wave minima, but many P-wave
minima remain. Things improve when
A=4 is included. But still, several local minima remain. 

This is where we stand right now.

Work led by B. D. Carlsson (Chalmers)
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Summary and conclusions

Covariance matrices for optimized LO-NLO-NNLO 
potentials available for download

Small variations in the nuclear interaction renders 
large fluctuations in predictions for heavier nuclei

Harmonic Oscillator EFT could be a promising 
approach for ab initio studies of heavy atomic nuclei

Non-local 3NF at N3LO is not constrained by A=2,3 
data 

N3LO optimizations benefit from gradients
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