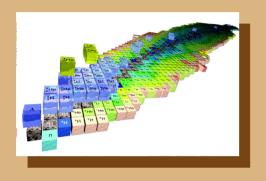
Quantum Monte Carlo for neutron-rich systems

Alexandros Gezerlis

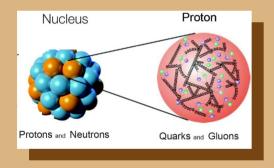
TRIUMF Nuclear Theory Workshop Vancouver, BC February 20, 2015

Outline



Many nucleons

- Neutron stars
- Quantum Monte Carlo



Nuclear forces

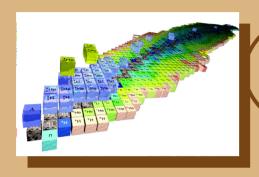
- Chiral Effective Field Theory
- Local chiral EFT

Credit: Bernhard Reischl

Results

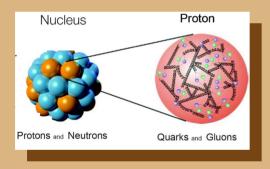
- Neutron matter: Using NN forces alone
- Neutron matter: Using NN+3NF
- Neutron drops
- Neutron star crusts

Outline



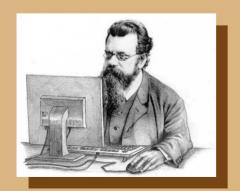
Many nucleons

- Neutron stars
- Quantum Monte Carlo



Nuclear forces

- Chiral Effective Field Theory
- Local chiral EFT



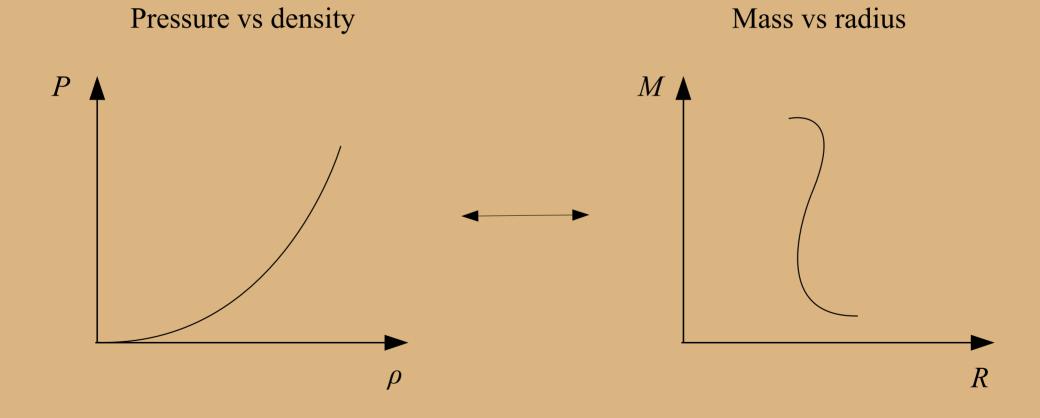
Credit: Bernhard Reischl

Results

- Neutron matter: Using NN forces alone
- Neutron matter: Using NN+3NF
- Neutron drops
- Neutron star crusts

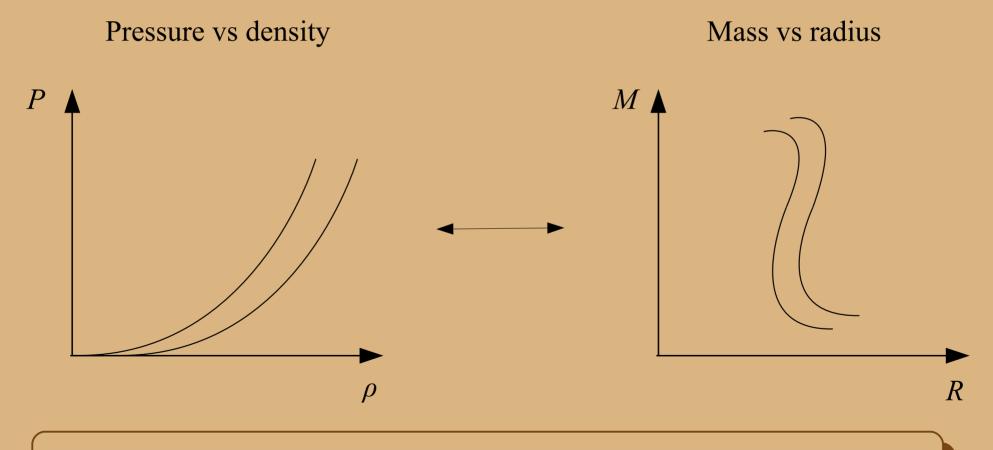
Neutron stars: micro-macro

TOV equations (or Hartle-Thorne, etc)



Uncertainty estimates

TOV equations (or Hartle-Thorne, etc)



Modern goal: systematic theoretical error bars

Many-body problem: QMC

Quantum Monte Carlo: stochastically solve the many-body Schrödinger equation in a fully non-perturbative manner

Many-body problem: QMC

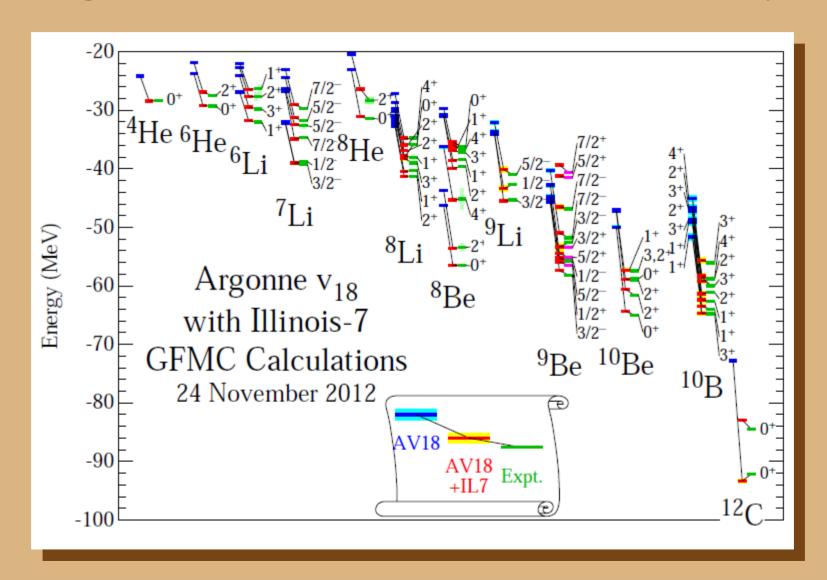
Quantum Monte Carlo: stochastically solve the many-body Schrödinger equation in a fully non-perturbative manner

Rudiments of

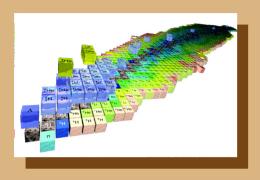
Diffusion Monte Carlo:
$$\Psi(\tau \to \infty) = \lim_{\tau \to \infty} e^{-(\mathcal{H} - E_T)\tau} \Psi_V$$
 $\to \alpha_0 e^{-(E_0 - E_T)\tau} \Psi_0$

Argonne/Illinois + nuclear GFMC

B. Wiringa's talk: nuclear Green's Function Monte Carlo is very accurate

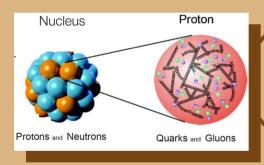


Outline



Many nucleons

- Neutron stars
- Quantum Monte Carlo



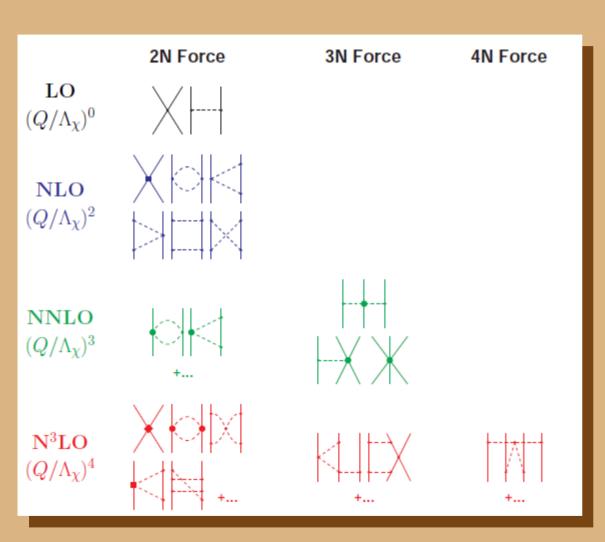
Nuclear forces

- Chiral Effective Field Theory
- Local chiral EFT

Credit: Bernhard Reischl

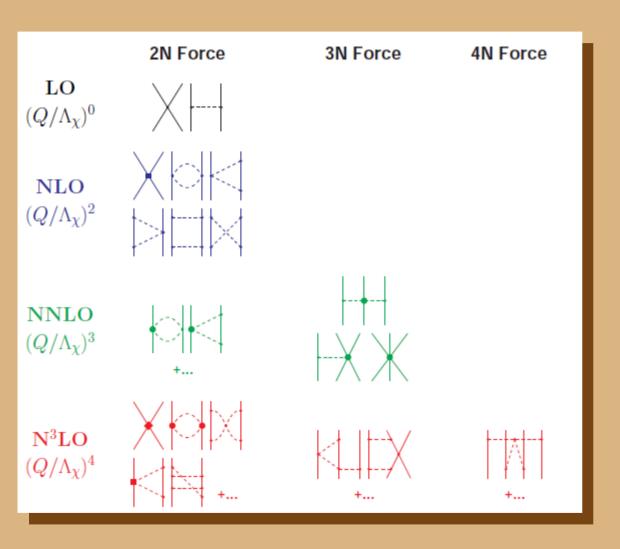
Results

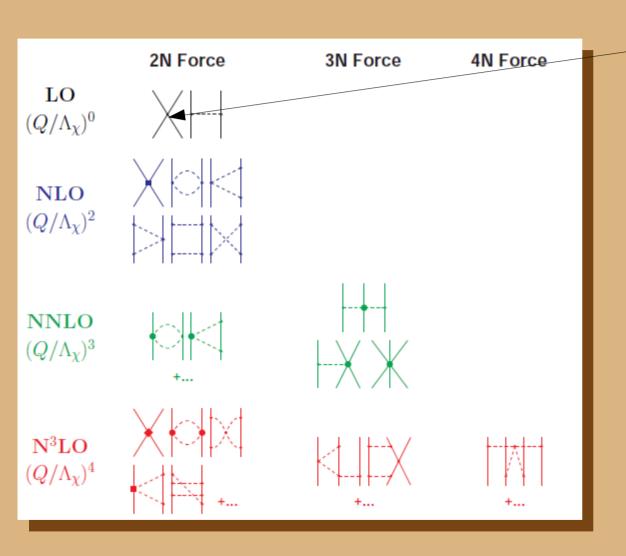
- Neutron matter: Using NN forces alone
- Neutron matter: Using NN+3NF
- Neutron drops
- Neutron star crusts



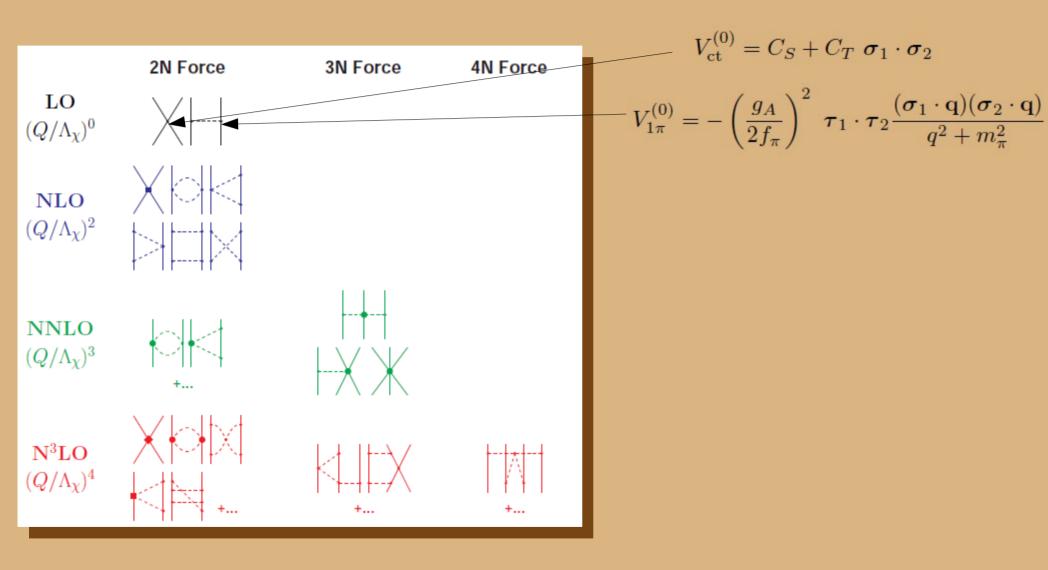
- Attempts to connect with underlying theory (QCD)
- Systematic lowmomentum expansion
- Consistent many-body forces
- Low-energy constants from experiment or lattice QCD
- Until recently non-local in coordinate space, so unused in continuum QMC
- Power counting's relation to renormalization still an open question

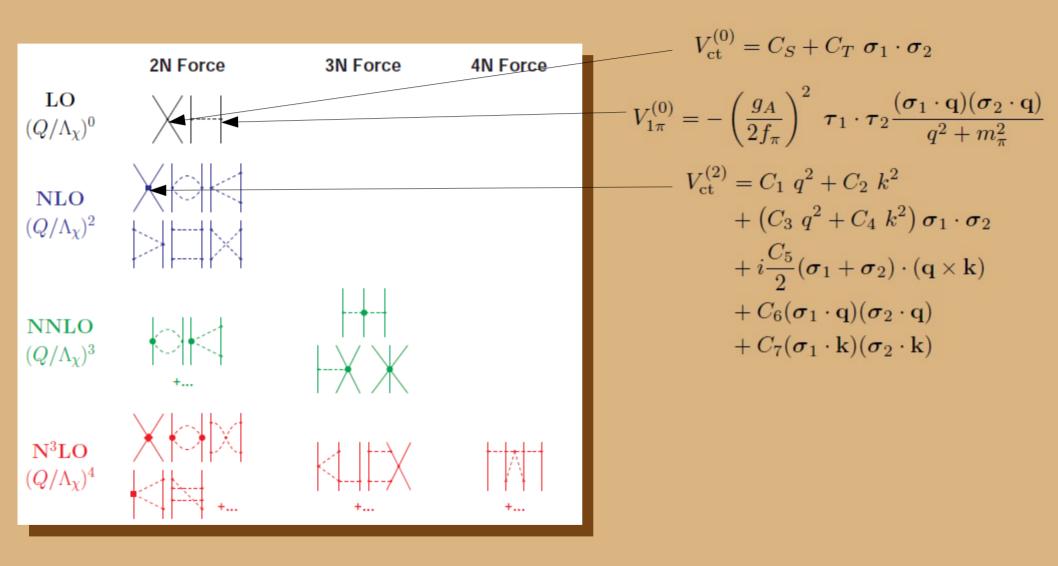
Weinberg, van Kolck, Kaplan, Savage, Wise, Machleidt, Epelbaum, ...

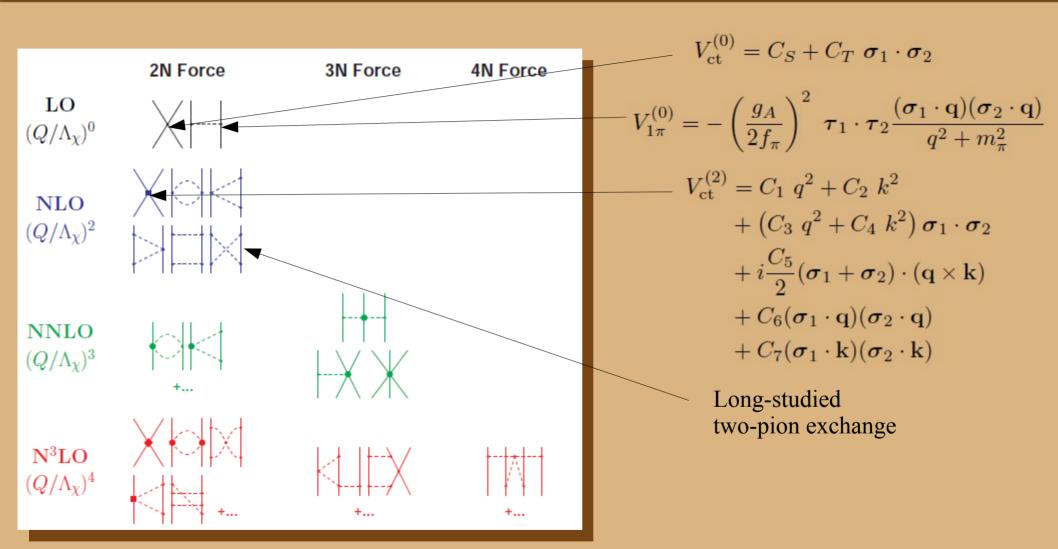


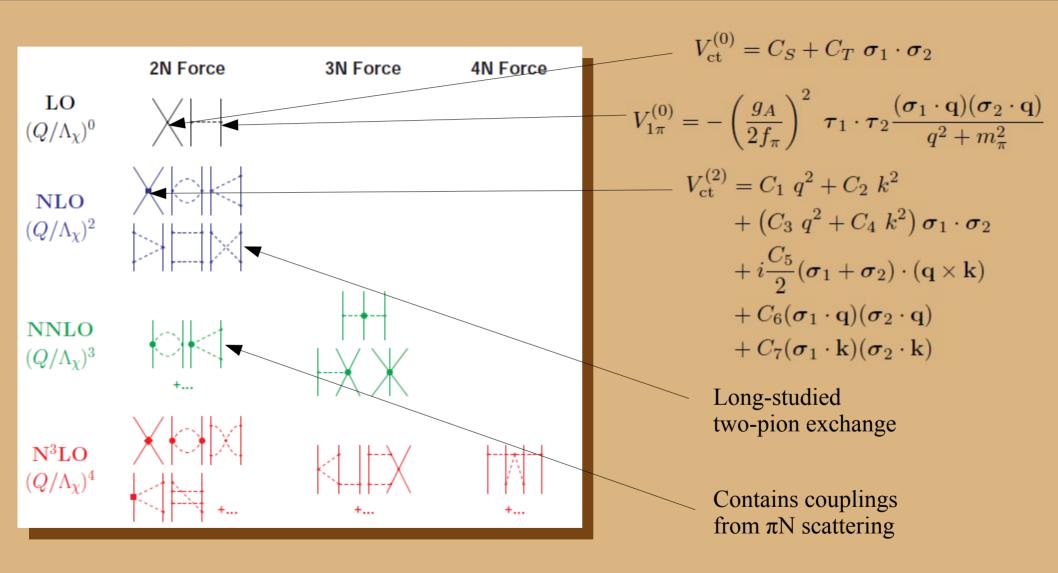


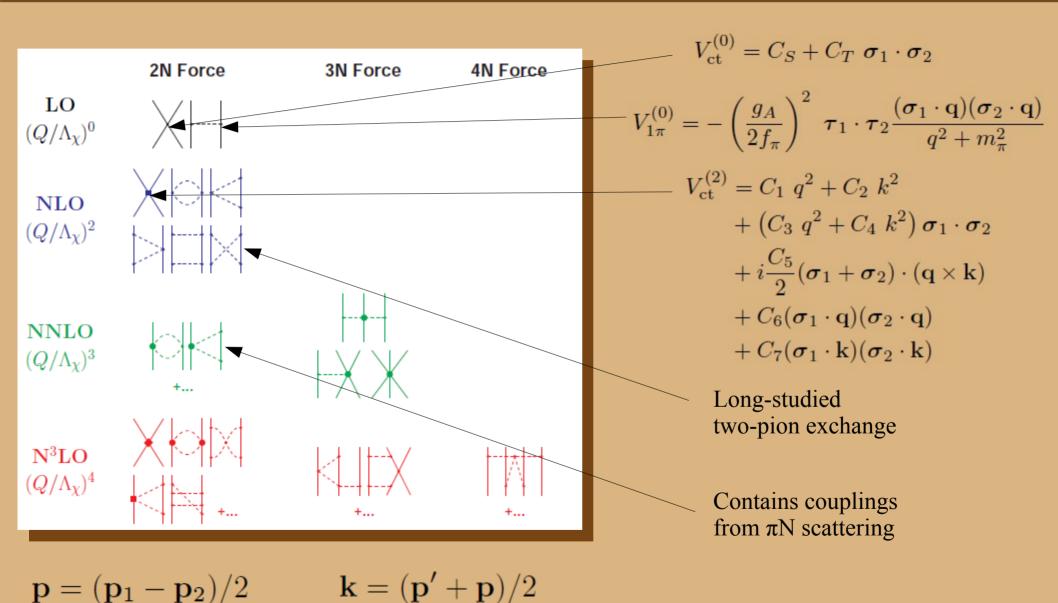
$$V_{\rm ct}^{(0)} = C_S + C_T \ \sigma_1 \cdot \sigma_2$$





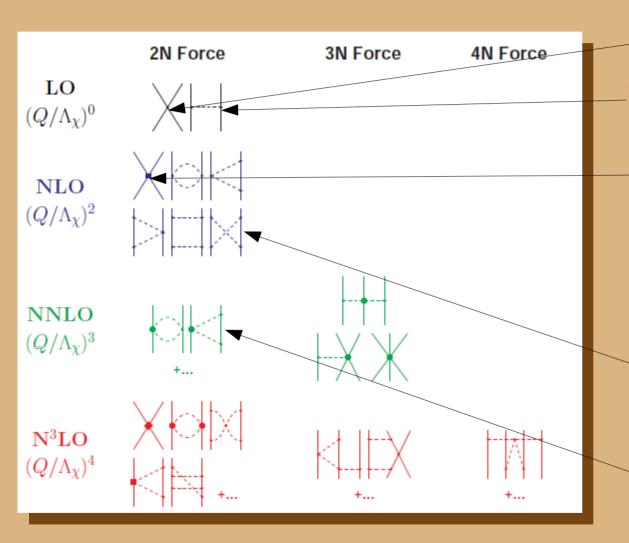






q = p' - p

 $\mathbf{p}' = (\mathbf{p}_1' - \mathbf{p}_2')/2$



$$\mathbf{p} = (\mathbf{p}_1 - \mathbf{p}_2)/2$$
 $\mathbf{k} = (\mathbf{p}' + \mathbf{p})/2$
 $\mathbf{p}' = (\mathbf{p}'_1 - \mathbf{p}'_2)/2$ $\mathbf{q} = \mathbf{p}' - \mathbf{p}$

$$V_{\text{ct}}^{(0)} = C_S + C_T \ \sigma_1 \cdot \sigma_2$$

$$-V_{1\pi}^{(0)} = -\left(\frac{g_A}{2f_\pi}\right)^2 \ \tau_1 \cdot \tau_2 \frac{(\sigma_1 \cdot \mathbf{q})(\sigma_2 \cdot \mathbf{q})}{q^2 + m_\pi^2}$$

$$-V_{\text{ct}}^{(2)} = C_1 \ q^2 + C_2 \ k^2$$

$$+ \left(C_3 \ q^2 + C_4 \ k^2\right) \sigma_1 \cdot \sigma_2$$

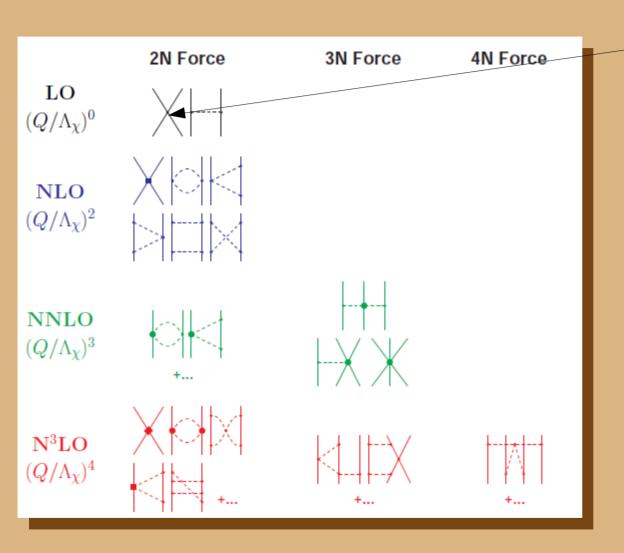
$$+ i \frac{C_5}{2} (\sigma_1 + \sigma_2) \cdot (\mathbf{q} \times \mathbf{k})$$

$$+ C_6 (\sigma_1 \cdot \mathbf{q})(\sigma_2 \cdot \mathbf{q})$$

$$+ C_7 (\sigma_1 \cdot \mathbf{k})(\sigma_2 \cdot \mathbf{k})$$
Long-studied two-pion exchange

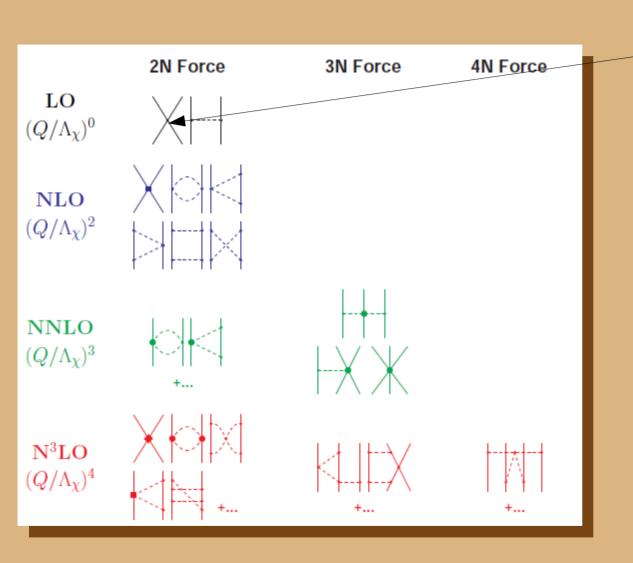
Contains couplings from πN scattering

k means non-local
q means local



$$V_{\rm ct}^{(0)} = C_S + C_T \ \sigma_1 \cdot \sigma_2$$

Merely the standard choice.



$$V_{\rm ct}^{(0)} = C_S + C_T \ \sigma_1 \cdot \sigma_2$$

Merely the standard choice.

Actually 4 terms in full set consistent with the symmetries of QCD

$$V_{\text{ct}}^{(0)} = C_1 + C_2 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + C_3 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + C_4 \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2$$

Pick 2 and antisymmetrize

A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013).

Local chiral EFT

Use the analogous freedom for NLO contacts

Write down a local energy-independent NN potential

• Pick 7 different contacts at NLO, just make sure that when antisymmetrized they lead to a set obeying the required symmetry principles

$$V_{\text{ct}}^{(2)} = C_1 q^2 + C_2 q^2 \tau_1 \cdot \tau_2$$

$$+ (C_3 q^2 + C_4 q^2 \tau_1 \cdot \tau_2) \sigma_1 \cdot \sigma_2$$

$$+ i \frac{C_5}{2} (\sigma_1 + \sigma_2) \cdot \mathbf{q} \times \mathbf{k}$$

$$+ C_6 (\sigma_1 \cdot \mathbf{q})(\sigma_2 \cdot \mathbf{q})$$

$$+ C_7 (\sigma_1 \cdot \mathbf{q})(\sigma_2 \cdot \mathbf{q}) \tau_1 \cdot \tau_2$$

$$V_{\text{ct}}^{(2)} = C_1 q^2 + C_2 k^2$$

$$+ (C_3 q^2 + C_4 k^2) \sigma_1 \cdot \sigma_2$$

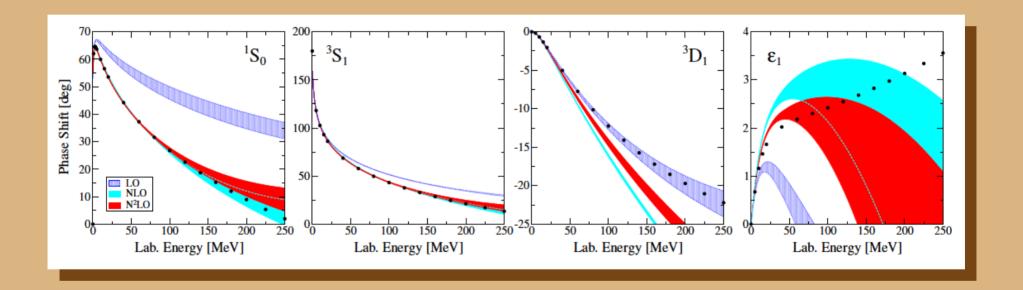
$$+ i \frac{C_5}{2} (\sigma_1 + \sigma_2) \cdot (\mathbf{q} \times \mathbf{k})$$

$$+ C_6 (\sigma_1 \cdot \mathbf{q})(\sigma_2 \cdot \mathbf{q})$$

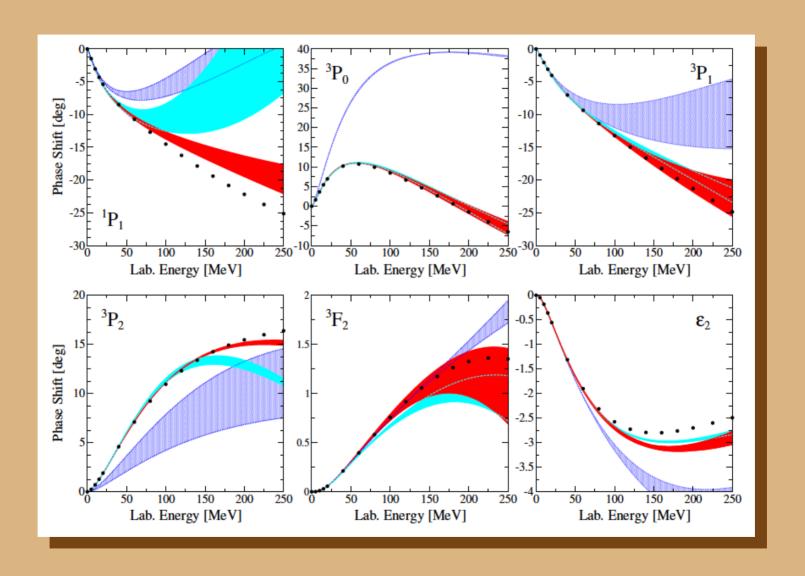
$$+ C_7 (\sigma_1 \cdot \mathbf{k})(\sigma_2 \cdot \mathbf{k})$$

A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013).

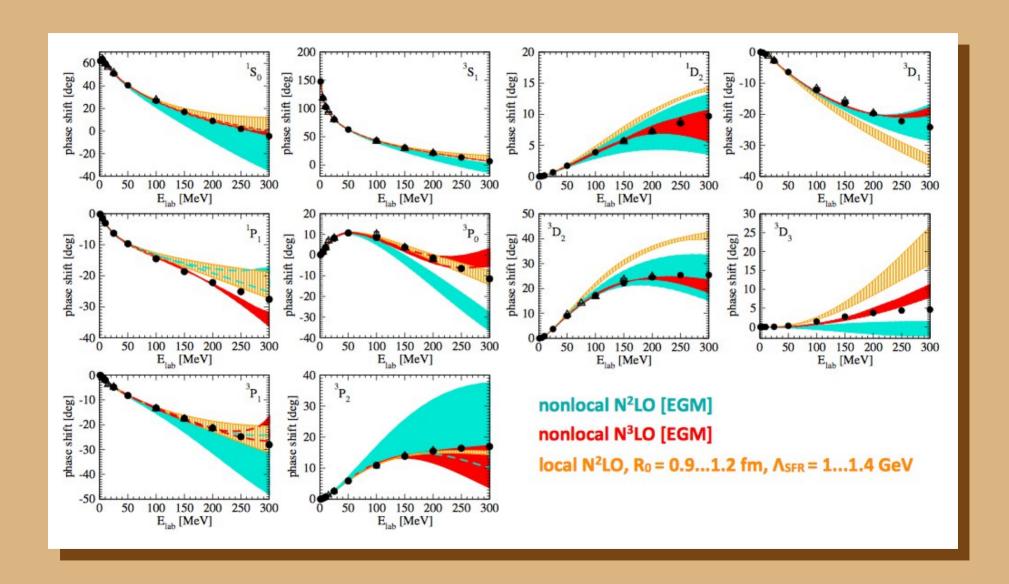
Phase shifts

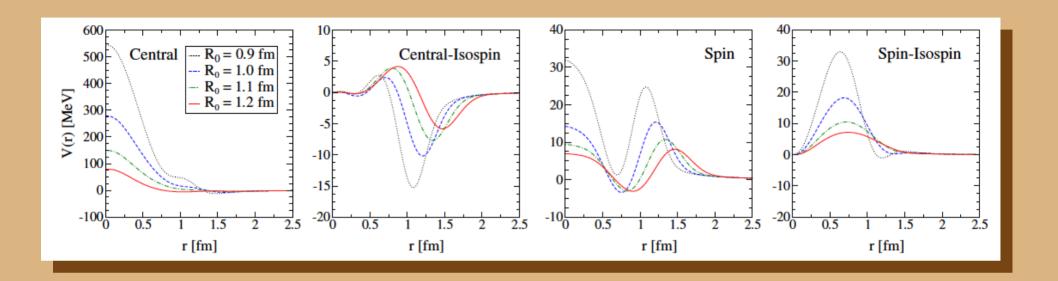


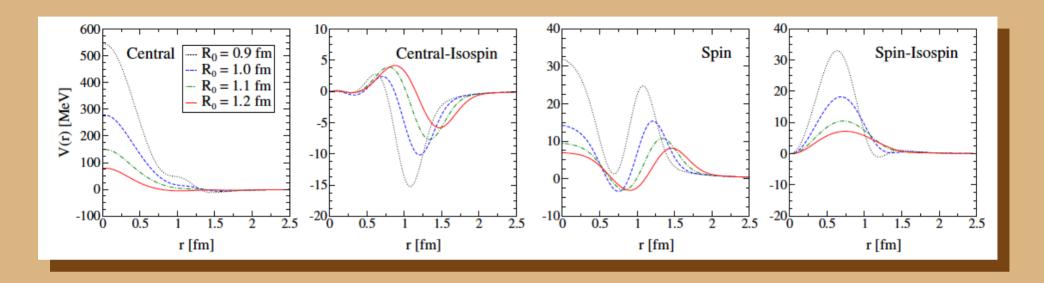
Phase shifts



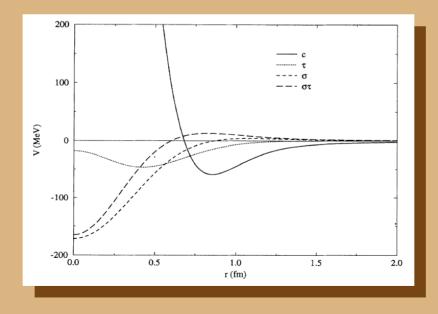
Compare to non-local EGM

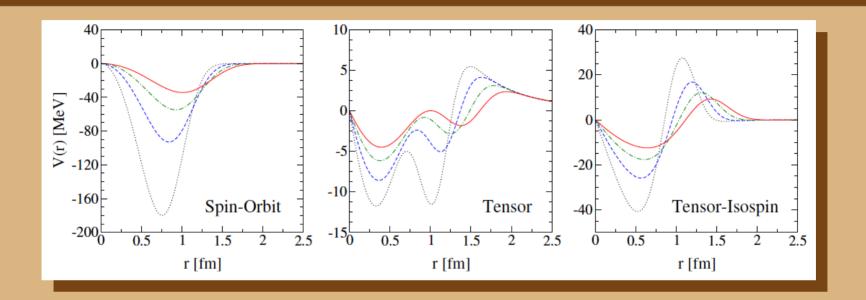


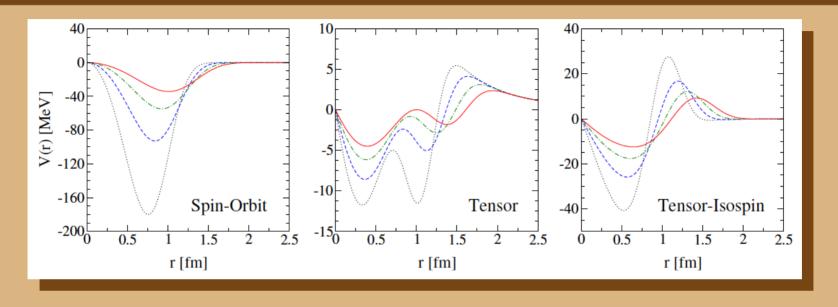




Compare with AV18

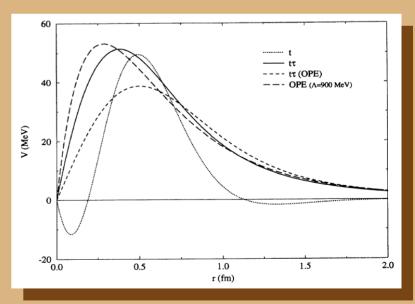




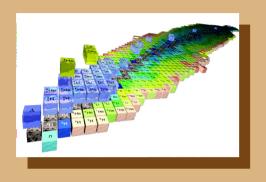


Compare with AV18



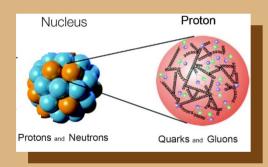


Outline



Many nucleons

- Neutron stars
- Quantum Monte Carlo



Nuclear forces

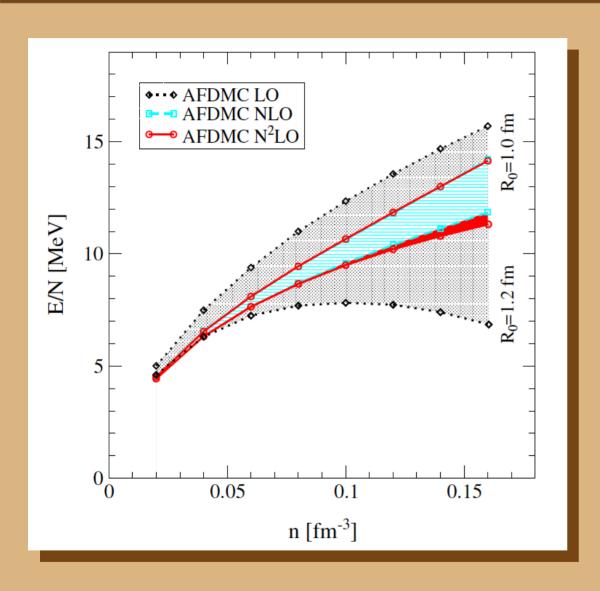
- Chiral Effective Field Theory
- Local chiral EFT

Credit: Bernhard Reischl

Results

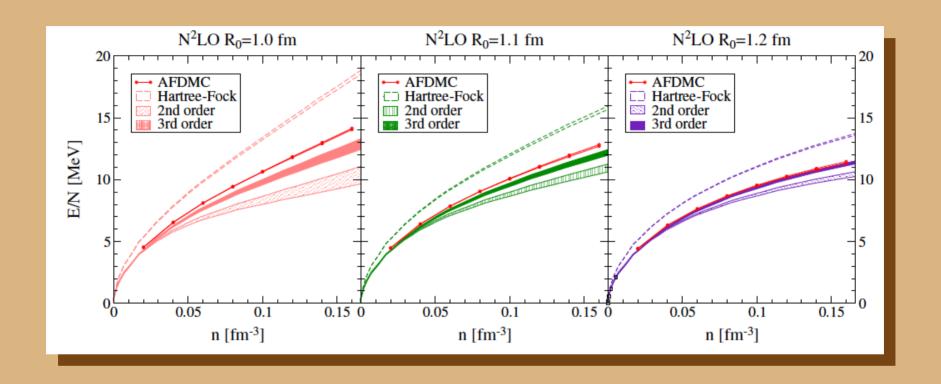
- Neutron matter: Using NN forces alone
- Neutron matter: Using NN+3NF
- Neutron drops
- Neutron star crusts

Chiral EFT in QMC



- Use Auxiliary-Field
 Diffusion Monte Carlo to
 handle the full interaction
- First ever non-perturbative systematic error bands
- Band sizes to be expected
- Many-body forces will emerge systematically

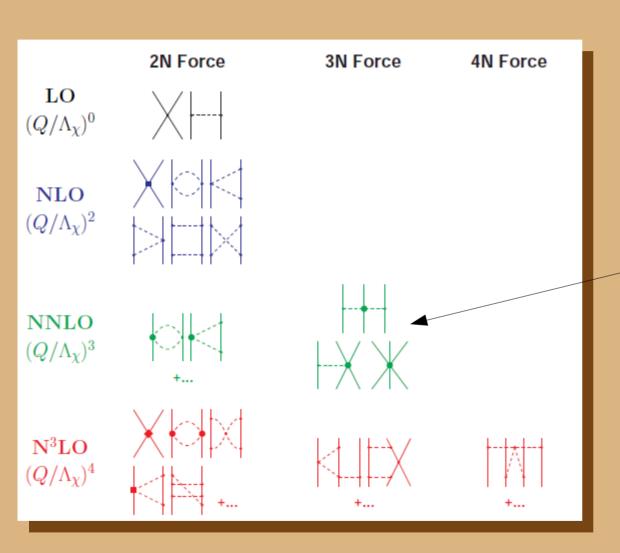
QMC vs MBPT



- MBPT bands come from diff. single-particle spectra
- Soft potential in excellent agreement with AFDMC

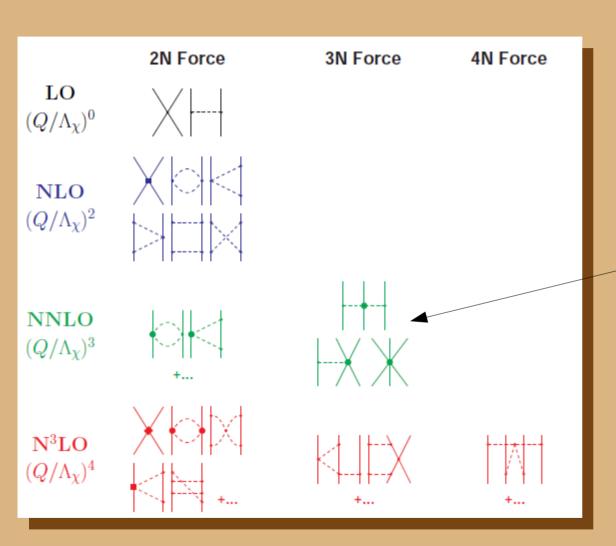
What about three-nucleon forces?

I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, in preparation



N2LO 3NF

- Two-pion exchange (parameter-free)
- One-pion exchange-contact (c_D)
- Three-nucleon contact (c_F)



N2LO 3NF

- Two-pion exchange (parameter-free)
- One-pion exchange-contact (c_D)
- Three-nucleon contact (c_E)

 V_D and V_E are merely regulator effects in PNM

3NF TPE in PNM

3NF TPE in PNM

Momentum space

$$V_{\text{TPE}}^{\text{PNM}} = \frac{1}{2} \left(\frac{g_A}{2f_{\pi}} \right)^2 \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_k \cdot \mathbf{q}_k)}{(q_i^2 + m_{\pi}^2)(q_k^2 + m_{\pi}^2)} \left[-\frac{4c_1 m_{\pi}^2}{f_{\pi}^2} + \frac{2c_3}{f_{\pi}^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

Momentum space

$$V_{\text{TPE}}^{\text{PNM}} = \frac{1}{2} \left(\frac{g_A}{2f_{\pi}} \right)^2 \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_k \cdot \mathbf{q}_k)}{(q_i^2 + m_{\pi}^2)(q_k^2 + m_{\pi}^2)} \left[-\frac{4c_1 m_{\pi}^2}{f_{\pi}^2} + \frac{2c_3}{f_{\pi}^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

Coordinate space

$$V_{\text{TPE}}^{\text{PNM}} = -\frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left(\frac{m_\pi}{4\pi} \right)^2 \left(-\frac{4c_1 m_\pi^2}{f_\pi^2} \right) \boldsymbol{\sigma}_i \cdot \hat{\mathbf{r}}_{ij} \boldsymbol{\sigma}_k \cdot \hat{\mathbf{r}}_{kj} U(r_{ij}) Y(r_{ij}) U(r_{kj}) Y(r_{kj})$$

$$+ \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left(\frac{1}{4\pi} \right)^2 \left(\frac{2c_3}{f_\pi^2} \right) \left[\frac{m_\pi^4}{9} X_{ij} (\mathbf{r}_{ij}) X_{kj} (\mathbf{r}_{kj}) - \frac{4\pi m_\pi^2}{9} X_{ik} (\mathbf{r}_{ij}) \delta(\mathbf{r}_{kj}) \right]$$

$$- \frac{4\pi m_\pi^2}{9} X_{ik} (\mathbf{r}_{kj}) \delta(\mathbf{r}_{ij}) + \frac{(4\pi)^2}{9} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_k \delta(\mathbf{r}_{ij}) \delta(\mathbf{r}_{kj}) \right]$$

Momentum space

$$V_{\text{TPE}}^{\text{PNM}} = \frac{1}{2} \left(\frac{g_A}{2f_{\pi}} \right)^2 \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_k \cdot \mathbf{q}_k)}{(q_i^2 + m_{\pi}^2)(q_k^2 + m_{\pi}^2)} \left[-\frac{4c_1 m_{\pi}^2}{f_{\pi}^2} + \frac{2c_3}{f_{\pi}^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

Coordinate space

Long-range (LR)

$$V_{\text{TPE}}^{\text{PNM}} = -\frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left(\frac{m_\pi}{4\pi} \right)^2 \left(-\frac{4c_1 m_\pi^2}{f_\pi^2} \right) \boldsymbol{\sigma}_i \cdot \hat{\mathbf{r}}_{ij} \boldsymbol{\sigma}_k \cdot \hat{\mathbf{r}}_{kj} U(r_{ij}) Y(r_{ij}) U(r_{kj}) Y(r_{kj})$$

$$+ \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left(\frac{1}{4\pi} \right)^2 \left(\frac{2c_3}{f_\pi^2} \right) \left[\frac{m_\pi^4}{9} X_{ij} (\hat{\mathbf{r}}_{ij}) X_{kj} (\hat{\mathbf{r}}_{kj}) - \frac{4\pi m_\pi^2}{9} X_{ik} (\hat{\mathbf{r}}_{ij}) \delta(\hat{\mathbf{r}}_{kj}) \right]$$

$$- \frac{4\pi m_\pi^2}{9} X_{ik} (\hat{\mathbf{r}}_{kj}) \delta(\hat{\mathbf{r}}_{ij}) + \frac{(4\pi)^2}{9} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_k \delta(\hat{\mathbf{r}}_{ij}) \delta(\hat{\mathbf{r}}_{kj}) \right]$$

Momentum space

$$V_{\text{TPE}}^{\text{PNM}} = \frac{1}{2} \left(\frac{g_A}{2f_{\pi}} \right)^2 \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_k \cdot \mathbf{q}_k)}{(q_i^2 + m_{\pi}^2)(q_k^2 + m_{\pi}^2)} \left[-\frac{4c_1 m_{\pi}^2}{f_{\pi}^2} + \frac{2c_3}{f_{\pi}^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

Coordinate space

$$V_{\text{TPE}}^{\text{PNM}} = -\frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left(\frac{m_\pi}{4\pi} \right)^2 \left(-\frac{4c_1 m_\pi^2}{f_\pi^2} \right) \boldsymbol{\sigma}_i \cdot \hat{\mathbf{r}}_{ij} \boldsymbol{\sigma}_k \cdot \hat{\mathbf{r}}_{kj} U(r_{ij}) Y(r_{ij}) U(r_{kj}) Y(r_{kj})$$

$$+ \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left(\frac{1}{4\pi} \right)^2 \left(\frac{2c_3}{f_\pi^2} \right) \left[\frac{m_\pi^4}{9} X_{ij}(\mathbf{r}_{ij}) X_{kj}(\mathbf{r}_{kj}) - \frac{4\pi m_\pi^2}{9} X_{ik}(\mathbf{r}_{ij}) \delta(\mathbf{r}_{kj}) \right]$$

$$- \frac{4\pi m_\pi^2}{9} X_{ik}(\mathbf{r}_{kj}) \delta(\mathbf{r}_{ij}) + \frac{(4\pi)^2}{9} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_k \delta(\mathbf{r}_{ij}) \delta(\mathbf{r}_{kj}) \right]$$

Intermediate-range (IR)

Momentum space

$$V_{\text{TPE}}^{\text{PNM}} = \frac{1}{2} \left(\frac{g_A}{2f_{\pi}} \right)^2 \frac{(\boldsymbol{\sigma}_i \cdot \mathbf{q}_i)(\boldsymbol{\sigma}_k \cdot \mathbf{q}_k)}{(q_i^2 + m_{\pi}^2)(q_k^2 + m_{\pi}^2)} \left[-\frac{4c_1 m_{\pi}^2}{f_{\pi}^2} + \frac{2c_3}{f_{\pi}^2} \mathbf{q}_i \cdot \mathbf{q}_j \right]$$

Coordinate space

Short-range (SR)

$$V_{\text{TPE}}^{\text{PNM}} = -\frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left(\frac{m_\pi}{4\pi} \right)^2 \left(-\frac{4c_1 m_\pi^2}{f_\pi^2} \right) \boldsymbol{\sigma}_i \cdot \hat{\mathbf{r}}_{ij} \boldsymbol{\sigma}_k \cdot \hat{\mathbf{r}}_{kj} U(r_{ij}) Y(r_{ij}) U(r_{kj}) Y(r_{kj})$$

$$+ \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left(\frac{1}{4\pi} \right)^2 \left(\frac{2c_3}{f_\pi^2} \right) \left[\frac{m_\pi^4}{9} X_{ij} (\mathbf{r}_{ij}) X_{kj} (\mathbf{r}_{kj}) - \frac{4\pi m_\pi^2}{9} X_{ik} (\mathbf{r}_{ij}) \delta(\mathbf{r}_{kj}) \right]$$

$$- \frac{4\pi m_\pi^2}{9} X_{ik} (\mathbf{r}_{kj}) \delta(\mathbf{r}_{ij}) + \frac{(4\pi)^2}{9} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_k \delta(\mathbf{r}_{ij}) \delta(\mathbf{r}_{kj})$$

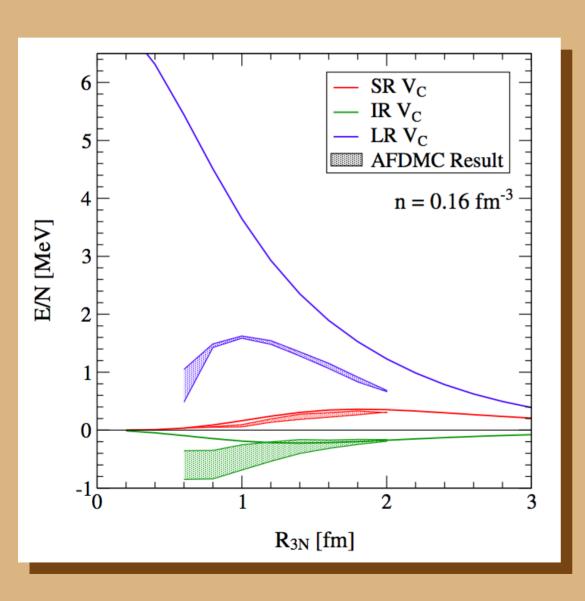
Regularizing

Attempt to be consistent with NN regularization

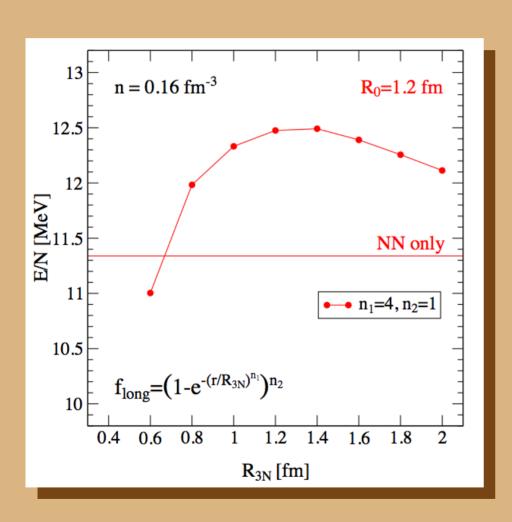
$$\delta(\mathbf{r}) \to \delta_{R_{3N}}(\mathbf{r}) = \frac{1}{\pi \Gamma(3/4) R_{3N}^3} e^{-(r/R_{3N})^4}$$

$$Y(r) \to Y(r) \left(1 - e^{-(r/R_{3N})^4}\right)$$

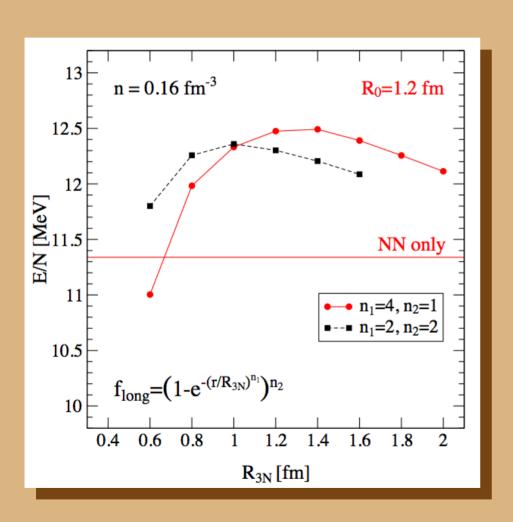
3NF contributions



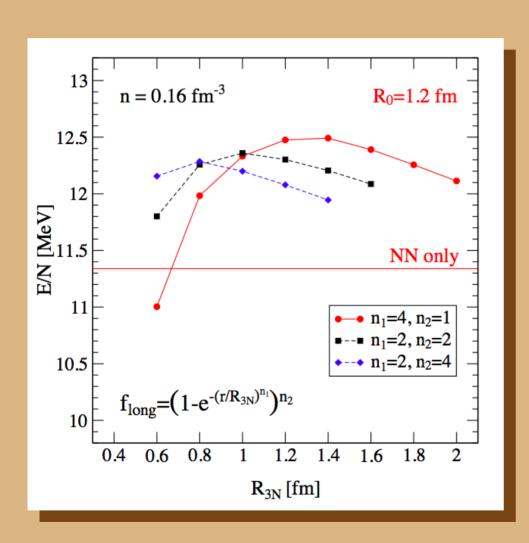
- Shown are both HF (lines) and AFDMC (bands) for 3NF contrib
- HF shows IR & SR vanishing at low R_{3N}
- AFDMC at low R_{3N} shows collapse of LR and IR



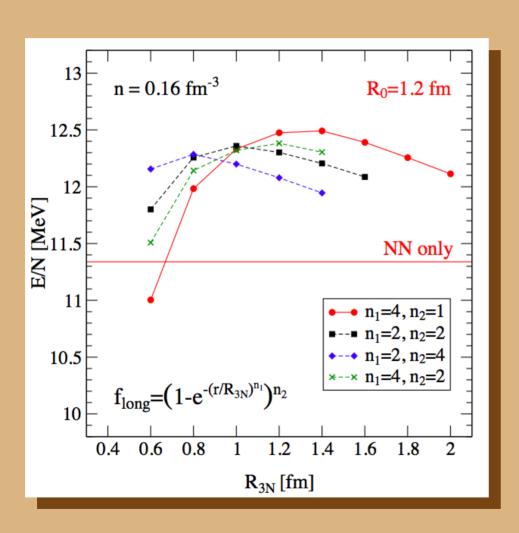
- Too large cutoff chops off too much
- Too small cutoff leads to collapse
- Plateau appears at intermediate values of the cutoff



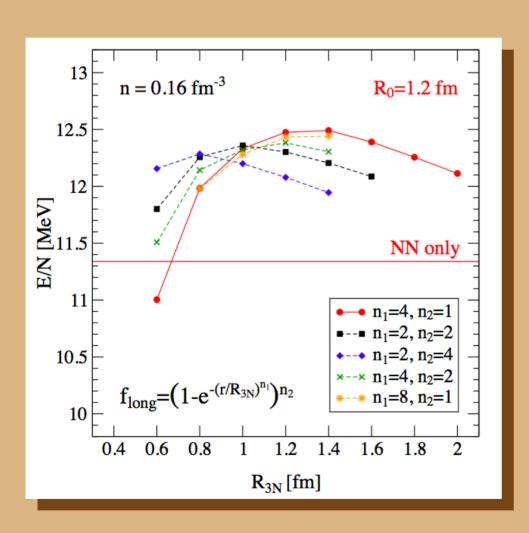
- Too large cutoff chops off too much
- Too small cutoff leads to collapse
- Plateau appears at intermediate values of the cutoff
- Result does not appear to depend on specific form of the regulator



- Too large cutoff chops off too much
- Too small cutoff leads to collapse
- Plateau appears at intermediate values of the cutoff
- Result does not appear to depend on specific form of the regulator

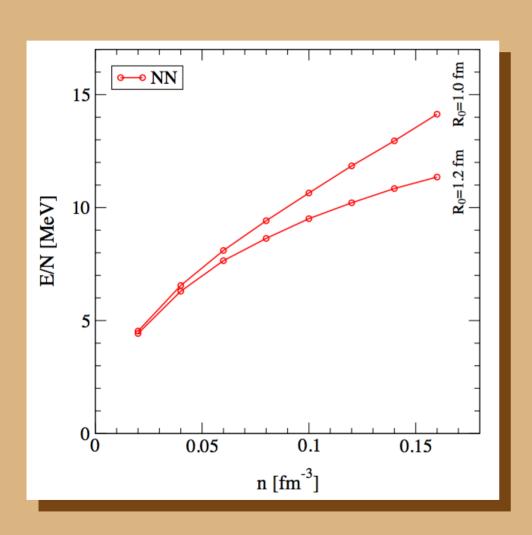


- Too large cutoff chops off too much
- Too small cutoff leads to collapse
- Plateau appears at intermediate values of the cutoff
- Result does not appear to depend on specific form of the regulator



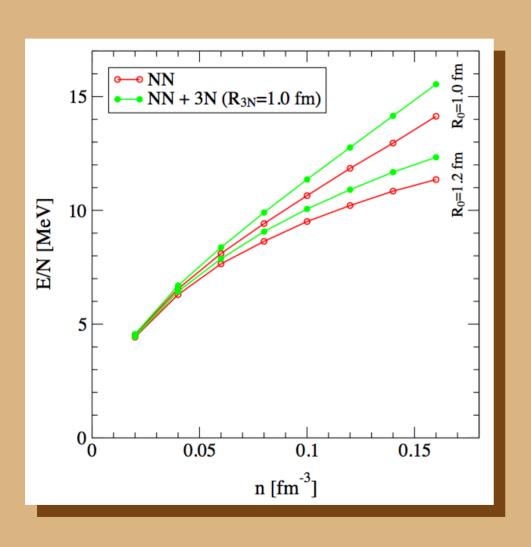
- Too large cutoff chops off too much
- Too small cutoff leads to collapse
- Plateau appears at intermediate values of the cutoff
- Result does not appear to depend on specific form of the regulator

Overall error bands



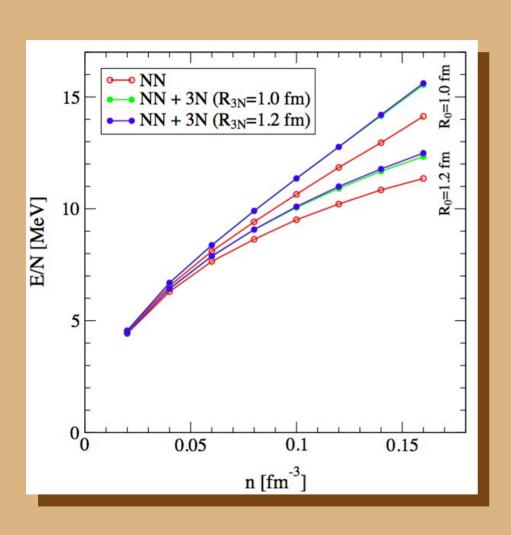
• NN error band already published

Overall error bands



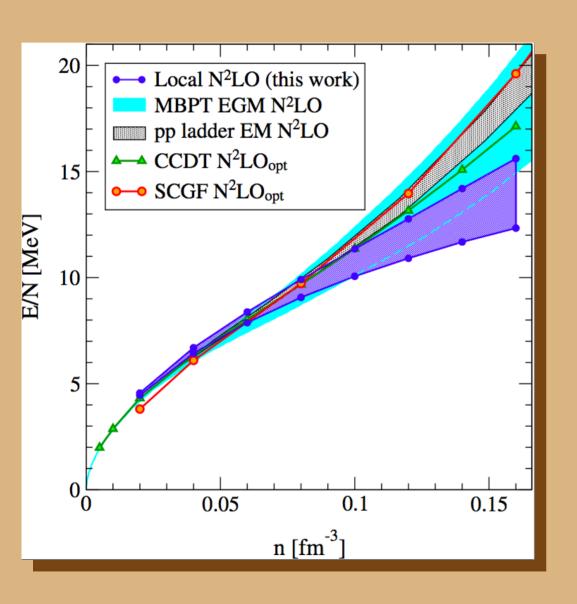
- NN error band already published
- Now vary 3NF cutoff within plateau

Overall error bands



- NN error band already published
- Now vary 3NF cutoff within plateau
- 3NF cutoff dependence tiny in comparison with NN cutoff one
- 3NF contribution 1-1.5 MeV, cf. with MBPT 4 MeV with EGM

Compare with other calculations at N2LO

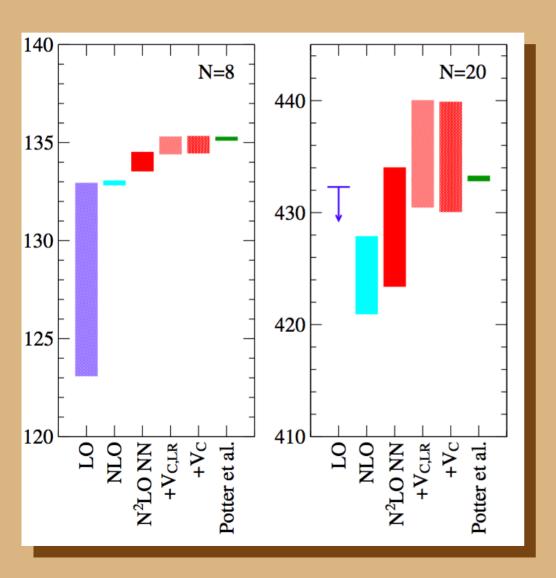


- Overall agreement across methods
- QMC band result of using more than one cutoff
- Band width essentially understood

Now turn to neutron drops

I. Tews, S. Gandolfi, A. Gezerlis, A. Schwenk, in preparation

Neutron drops with NN+3NF chiral forces

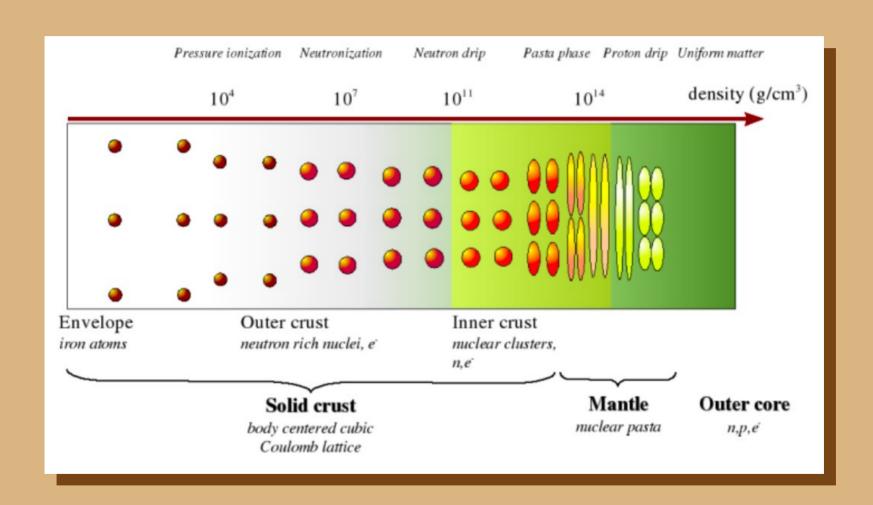


- 10 MeV harmonic oscillator trap
- Order-by-order systematics studied
- Soft LO potential leads to very low energies, especially in larger systems
- Reasonable agreement with ACCSD calculations

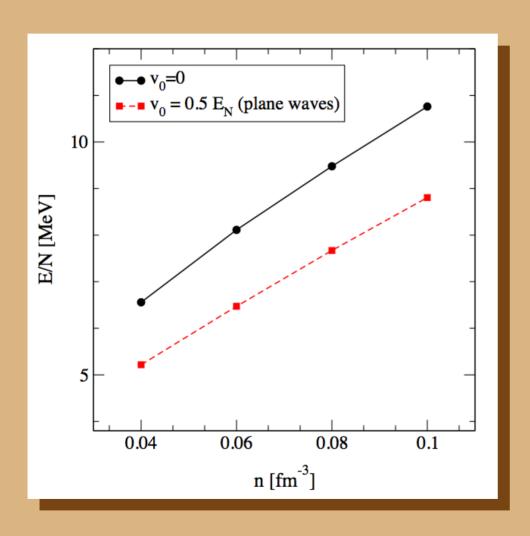
Remember that neutron-star crusts also involve a lattice of nuclei

M. Buraczynski and A. Gezerlis, in preparation

Neutron star crusts more than PNM

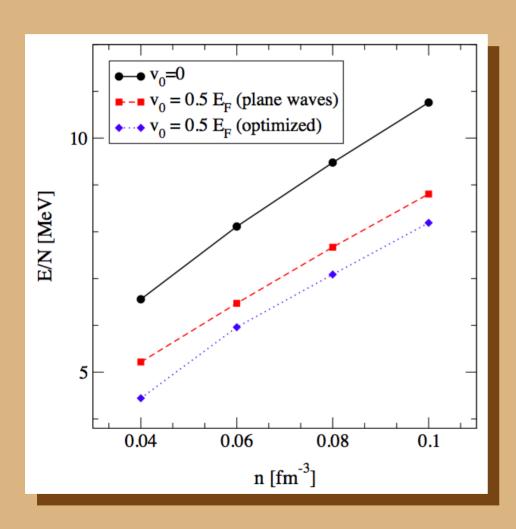


Static response of neutron matter



- Periodic potential in addition to nuclear forces
- Energy trivially decreased

Static response of neutron matter



- Periodic potential in addition to nuclear forces
- Energy trivially decreased
- Considerable dependence on wave function (physics input)
- Microscopic input for energy-density functionals

Conclusions

- Local chiral N2LO 3NF forces derived and being used in the many-body context
- Local 3NF contributions much smaller than non-local ones
- Effects of the regulator intriguing and being further explored
- Static response also being investigated

Acknowledgments

Funding

Collaborators

- Matt Buraczynski (Guelph)
- Evgeny Epelbaum (Bochum)
- Stefano Gandolfi (LANL)
- Kai Hebeler (Darmstadt)
- Achim Schwenk (Darmstadt)
- Ingo Tews (Darmstadt)

TRIUMF SUMMER INSTITUTE 2015

TRIUMF SUMMER INSTITUTE 2015

Lecturers and Topics:

Klaus Blaum (MPI Heidelberg) – Nuclear mass measurements

Pierre Capel (EP Brussels) – Introduction to nuclear reactions

Alexandra Gade (Michigan State University) – Experiments with exotic nuclei

Jason Holt (TRIUMF) - Ab initio approaches to medium-mass nuclei

Augusto Macchiavelli (Lawrence Berkeley National Lab) – Nuclear spectroscopy

Alfredo Poves (University of Madrid) – The shell model and nuclear structure

Sofia Quaglioni (Lawrence Livermore National Lab) – Ab initio many-body theory of nuclear reactions

Robert Roth (TU Darmstadt) – Ab initio approaches to light nuclei

Olivier Sorlin (GANIL) - Shell evolution and nuclear forces

TRIUMF SUMMER INSTITUTE 2015

Organizers:

Alex Gezerlis (University of Guelph) gezerlis@uoguelph.ca - Chair

Sonia Bacca (TRIUMF) bacca@triumf.ca

Adam Garnsworthy (TRIUMF) garns@triumf.ca

Petr Navrátil (TRIUMF) navratil@triumf.ca

Contact:

tsi@triumf.ca

http://tsi.triumf.ca