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INTRODUCTION:  
Ab initio nuclear theory and nuclear forces
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Scientific wheel of progress
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Promising approach for nuclear physics
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Chiral nuclear interactions

• Systematic low-energy 
expansion: (q/Λχ)𝜈

• Connects several sectors: 
𝜋N, NN, NNN, jN

• Short-range physics included 
as contact interactions. 
LECs need to be fitted to 
data.

Chiral EFT
• E. Epelbaum, H. Hammer, U. Meissner Rev. Mod. Phys.  
81 (2009) 1773
• R. Machleidt, D. Entem, Phys. Rep. 503 (2011) 1

Chiral EFT
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Key science questions

What is the precision of 
nuclear-structure calculations 

in this approach?

What is the accuracy of 
nuclear-structure calculations 

in this approach?
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Key science questions

What is the precision of 
nuclear-structure calculations 

in this approach?

Ocalc = O0 ±�O

Uncertainty should be 
possible to extract in chiral 
EFT + ab initio framework

See talks by:
A. Ekström
K. Wendt

and recent preprint:
arXiv:1502.04682 [nucl-th]

What is the accuracy of 
nuclear-structure calculations 

in this approach?
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CHIRAL FORCES: FROM NN TO A=4 
WITH ERROR ANALYSIS
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Statistical error analysis

❖ Aim for a good description of low-
energy data within chiral EFT
‣ NN- and πN-scattering

‣ NNN structure properties

❖ Aim for a good understanding of 
low-energy data and of our model
‣ What are the error bars on our 

calculations?

‣ How sensitive is different data to 
different parts of the interaction?

‣ What are the correlations between data? 
and between model parameters?
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Optimization strategy

Low-energy constants (LECs) enter through contact interactions and 
need to be fitted to experimental data. 

1. πN LECs determined first from Pion-Nucleon scattering phase shifts or 
from NN phase shifts in peripheral waves

2. (NN-only) objective function based on Nijmegen phase shift analysis

‣ Chi-by-eye optimization
‣ N3LO needed for high-accuracy fit up to Tlab=290 MeV

3. NNN LECs determined at the end given the NN part. Usually at NNLO. 
First results at N3LO are coming.
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Objective function

Sector Observable LO NLO NNLO

NN Scattering X X X

2H Egs, rch, Q X X X

πN Scattering X

3He Egs, rch X

3H Egs, rch, T1/2 X

NN

πN

3N

Sequential
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l23N
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Objective function

Sector Observable LO NLO NNLO

NN Scattering X X X

2H Egs, rch, Q X X X

πN Scattering X

3He Egs, rch X

3H Egs, rch, T1/2 X

NN

πN

3N

Simultaneous
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Optimization with derivatives

❖ First implementation used POUNDerS for optimization. 

❖ More efficient algorithms (Levenberg-Marquardt, Newton), 
and statistical error analysis require derivatives 

❖ Numerical derivation using finite differences is plagued by 
low numerical precision and is computationally costly.

❖ Instead, we use Automatic Differentiation (AD)

@ri
@pj

and
@2ri

@pj@pk
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Numerical derivation: finite differences

Finite difference: Get first- and second derivatives from 
linear combinations of several calculations around a point p.

‣Computationally heavy: About 3,653 (order 3) 
calculations are needed for 26 parameters.

‣Low precision: Differences of large numbers

‣Results are sensitive to the chosen step size.



C. Forssén, Vancouver, Feb. 17, 2015

Numerical derivation: Automatic differentiation

Automatic differentiation: A computer implementation for 
calculating the observables will consist of a long chain of simple 
mathematical operations. Apply the chain rule all the way from 
the initialization of the parameters to the final result (forward-
mode AD).

‣Computationally feasible: R-matrix inversion and A=3 
Hamiltonian diagonalization are the time consumers. In total, 
just ~20 times slower (for 26 pars, with d/dpi and d2/dpidpj).

‣High precision: derivatives calculated are about as exact as 
the value of the observable itself.
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Numerical derivation: Automatic differentiation
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Total error budget

❖ The total error budget is 

❖ At a given chiral order ν, the omitted diagrams should be of 
order

❖ Still needs to be converted to actual numbers 𝜎theo

❖ We translate this into an error in the scattering amplitudes 

❖ which is then propagated to an error in the observable.

O �
(Q/⇤�)

⌫+1
�

�

(amp)

theo,x

= C

x

✓
Q

cm

⇤
�

◆
⌫+1

, x 2 {NN,⇡N}

�2

tot

= �2

exp

+ �2

theo

+ �2

method

+ �2

num

E.g. , NCSM Neglected



C. Forssén, Vancouver, Feb. 17, 2015

Total np cross section

Prelim
inary
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Differential scattering observables

9.85 MeV

50.04 MeV

150.0 MeV

Prelim
inary
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Chi-squared per energy bin

With theory errors

Fix CNN
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Statistical error analysis
Statistical errors

I In a minimum there will be an uncertainty in the optimal
parameter values p

0

given by the �2 surface.1

I From the hessian at p
0

we can calculate a covariance matrix
and from that a correlation matrix.

1

J Dobaczewski et al 2014 J. Phys. G: Nucl. Part. Phys. 41 074001

Boris D. Carlsson �EFT optimization

HESSIAN
COVARIANCE

MATRIX
CORRELATION

MATRIX
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Correlations - sequential fits

NN
Selected 

𝛑N
3N
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Correlations - sequential fits

S waves
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Correlations - sequential fits

Deuteron channels
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Correlations - sequential fits

3N LECs
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Correlations - sequential fits

Selected 𝛑N LECs
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Correlations - sequential fits

By construction 
no correlations 

between 
different groups 
of parameters
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Correlations - simultaneous fit
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Error propagation: bound states

Sector Observable LO NLO NNLO Exp

2H Egs -2.225 -2.225 -2.225(1) -2.225

3H Egs -11.44 -8.268 -8.482 −8.482(3)

3H T1/2 (ME) 0.6848(11) 0.6848(11)

4He rch 1.080 1.482 1.445(2) 1.467(40)

4He Egs -40.39 -27.44 -28.26 -28.30

+1
-6

+2
 -5

+27
 -38

+3
 -4

+13
-15

+4
 -5

Predictions

Prelim
inary

Asymmetric erors due 
to quadratic error 

propagationO(p) ⇡ O(p0) + JO�p+
1

2
�pTHO�p
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Error propagation: bound states

Sector Observable LO NLO NNLO Exp

2H Egs -2.225 -2.225 -2.225(1) -2.225

3H Egs -11.44 -8.268 -8.482 −8.482(3)

3H T1/2 (ME) 0.6848(11) 0.6848(11)

4He rch 1.080 1.482 1.445(2) 1.467(40)

4He Egs -40.39 -27.44 -28.26 -28.30

4He Egs −40.27(13) -27.56 -28 -28.30

+1
-6

+2
 -5

+27
 -38

+3
 -4

+13
-15

+4
 -5

In this optimization, the ci:s were fitted 
separately to piN data, thus ignoring 

correlations and increasing errors.

Predictions

Prelim
inary

+14
-18

+8
 -18

Sequential approach 
with propagated errors
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CONCLUSION
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Summary

❖ Chiral EFT with error analysis  

‣ Simultaneous optimization of all LECs at LO, NLO, NNLO using 
NN, NNN and piN data is critical in order to:
• capture all correlations between the parameters, and 
• reduce the statistical errors.

‣ We find that statistical errors are small (≲1%), and the total error 
budget is dominated by theoretical errors. Statistical errors 
increase dramatically for sequentially optimized potentials.

‣ Automatic differentiation allows efficient and accurate 
computation of derivatives and allows a statistical error analysis.

‣ First results for correlations, parameter uncertainties and error 
propagation in the few-body sector.


