Bound and continuum properties of A=6 nuclei

Progress in Ab Initio Techniques in Nuclear Physics

February 18th, 2015

Collaborators: **S. Quaglioni, P. Navrátil, G. Hupin**

LLNL-PRES-667406

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Carolina Romero-Redondo

Outline

- Introduction
- NCSM/RGM
- NCSMC
- ⁶Li structure and d+⁴He dynamics
- ⁶He within a ⁴He+n+n basis
- Preliminary calculation for ³H+n+n
- Summary and outlook

Ab initio in nuclear physics

- Assumes nucleons as the effective degrees of freedom
- Uses realistic interactions
- The goal is twofold:

Ab initio in nuclear physics

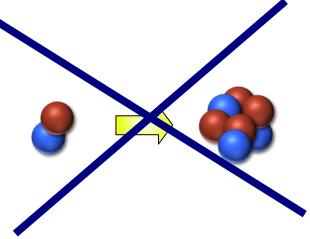
- Assumes nucleons as the effective degrees of freedom
- Uses realistic interactions
- The goal is twofold:

To increase our understanding of nuclear interactions

Ab initio in nuclear physics

- Assumes nucleons as the effective degrees of freedom
- Uses realistic interactions
- The goal is twofold:

To increase our understanding of nuclear interactions


To achieve a predictive theory for light nuclear systems:

- Exotic nuclei
- Reactions important in nuclear astrophysics
- Reactions important for energy production projects

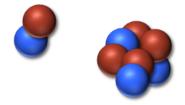
No-core shell model (NCSM)

Is an *ab initio* method capable of studying light bound nuclei from an accurate Hamiltonian.

Is not able to deal with continuum states and therefore is not applicable to reactions.

No-core shell model (NCSM)

Is an *ab initio* method capable of studying light bound nuclei from an accurate Hamiltonian.


Is not able to deal with continuum states and therefore is not applicable to reactions.

Resonating group method (RGM)

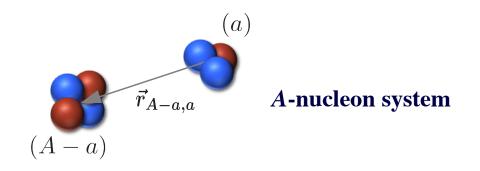
Microscopic cluster approach.

Permits studying the scattering of clusters

Traditionally uses non-realistic Hamiltonian

No-core shell model (NCSM)

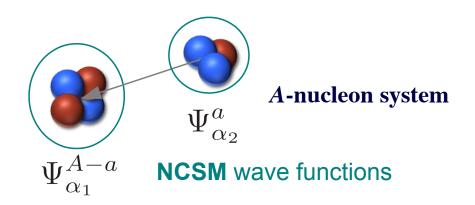
Is an *ab initio* method capable of studying light bound nuclei from an accurate Hamiltonian.


Is not able to deal with continuum states and therefore is not applicable to

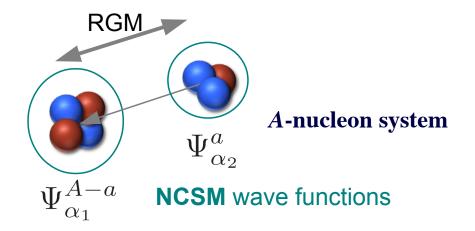
^{reactions.} Uses NCSM wave functions within the RGM to obtain an *ab initio* formalism which uses an accurate nuclear Hamiltonian and is capable of studying both structure and scattering Microscopic

Permits studying the scattering of clusters

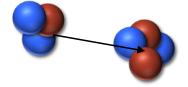
Traditionally uses non-realistic Hamiltonian


Summary: binary clusters

- S. Quaglioni and P. Navrátil
- PRL 101, 092501 (2008)
- PRC 79, 044606 (2009)

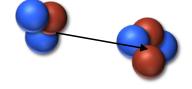

Summary: binary clusters

- S. Quaglioni and P. Navrátil
- PRL 101, 092501 (2008)
- PRC 79, 044606 (2009)


Summary: binary clusters

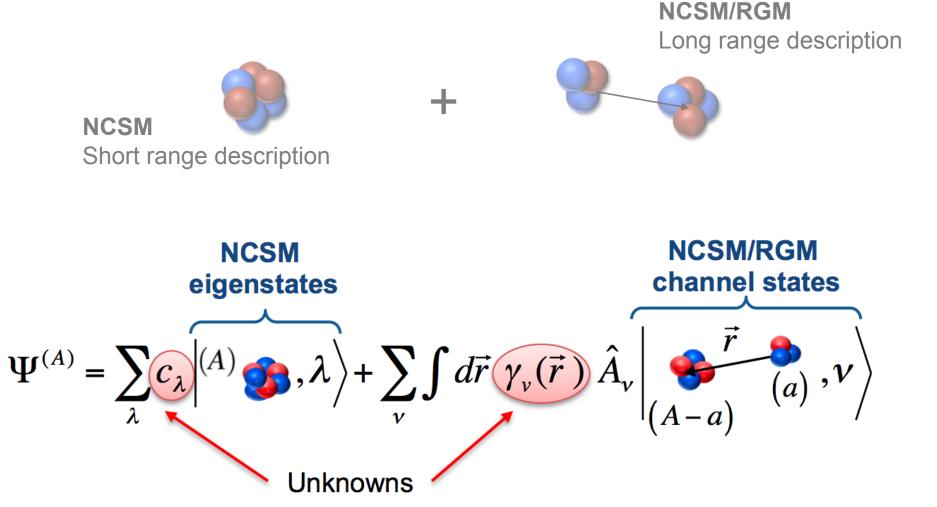

- S. Quaglioni and P. Navrátil
- PRL 101, 092501 (2008)
- PRC 79, 044606 (2009)

Long range description

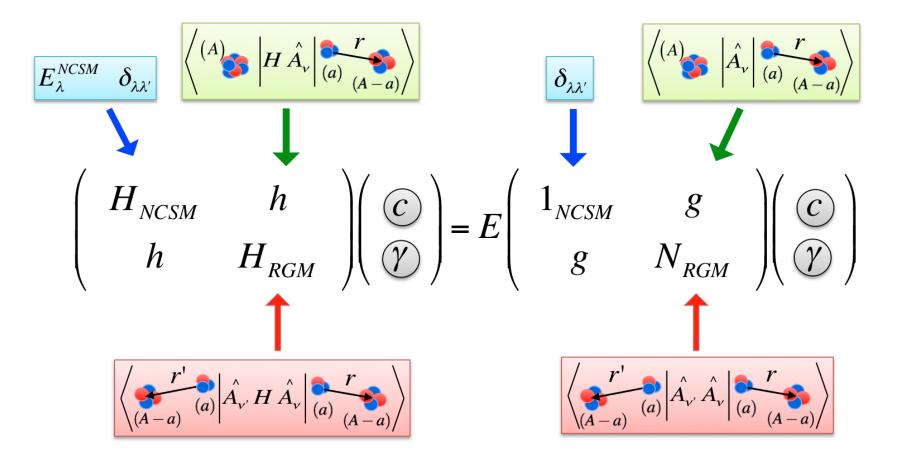


S. Baroni, P. Navrátil and S. Quaglioni PRL **110**, 022505 (2013); PRC **87**, 034326 (2013)

Long range description

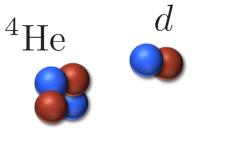


S. Baroni, P. Navrátil and S. Quaglioni PRL **110**, 022505 (2013); PRC **87**, 034326 (2013)



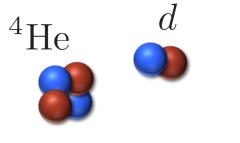
NCSMC

$$\begin{pmatrix} H_{NCSM} & h \\ h & H_{RGM} \end{pmatrix} \begin{pmatrix} \hline C \\ \hline \gamma \end{pmatrix} = E \begin{pmatrix} 1_{NCSM} & g \\ g & N_{RGM} \end{pmatrix} \begin{pmatrix} \hline C \\ \hline \gamma \end{pmatrix}$$



- One nucleon projectile: PRL **110**, 022505 (2013)
- Two-nucleon projectile: This talk
- Three-nucleon projectile: J. Dohet-Eraly, today at 11am

- (d,p) transfer reactions with p-shell target: F. Raimondi tomorrow at 10am
- Three-cluster basis: This talk

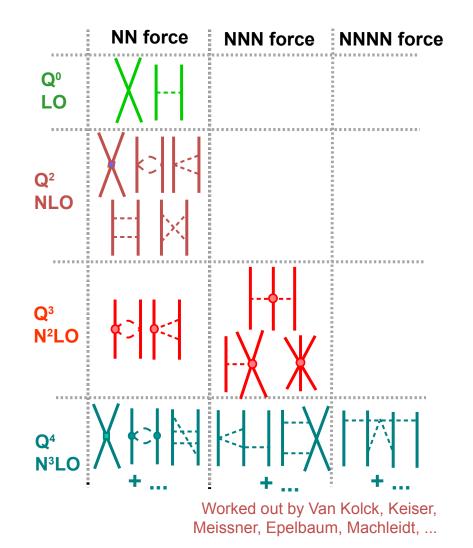

6-nucleon system

* Big bang nucleosynthesis

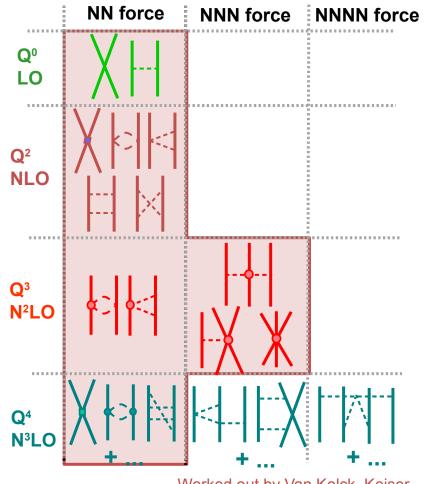
* Characterization of deuterium impurities in materials

NN forcesP. Navratil and S. Quaglioni. PRC 83, 044609 (2011)NN+3N forcesG. Hupin, S. Quaglioni and P. Navrátil. ArXiv: 1412.4101

6-nucleon system

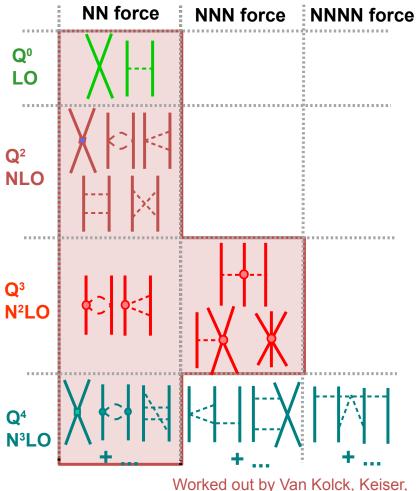

- * Big bang nucleosynthesis
- * Characterization of deuterium impurities in materials

NN forcesP. Navratil and S. Quaglioni. PRC 83, 044609 (2011)NN+3N forcesG. Hupin, S. Quaglioni and P. Navrátil. ArXiv: 1412.4101

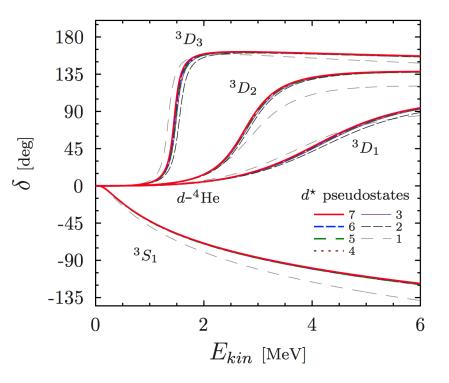

Nuclear interaction

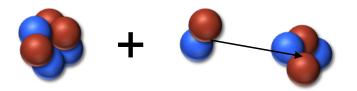
- Two- plus three-nucleon (NN+3N) forces from chiral effective field theory (EFT):
 - NN potential at N³LO (by Entem & Machleidt).
 - 3N force at N²LO (in the local form by Navrátil) with: Λ_{3N} = 500 MeV, constrained to reproduce ³H binding energy and b-decay halflife.

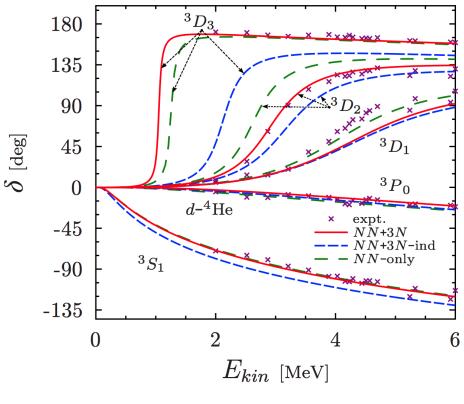
Nuclear interaction


- Two- plus three-nucleon (NN+3N) forces from chiral effective field theory (EFT):
 - NN potential at N³LO (by Entem & Machleidt).
 - 3N force at N²LO (in the local form by Navrátil) with: Λ_{3N} = 500 MeV, constrained to reproduce ³H binding energy and b-decay halflife.

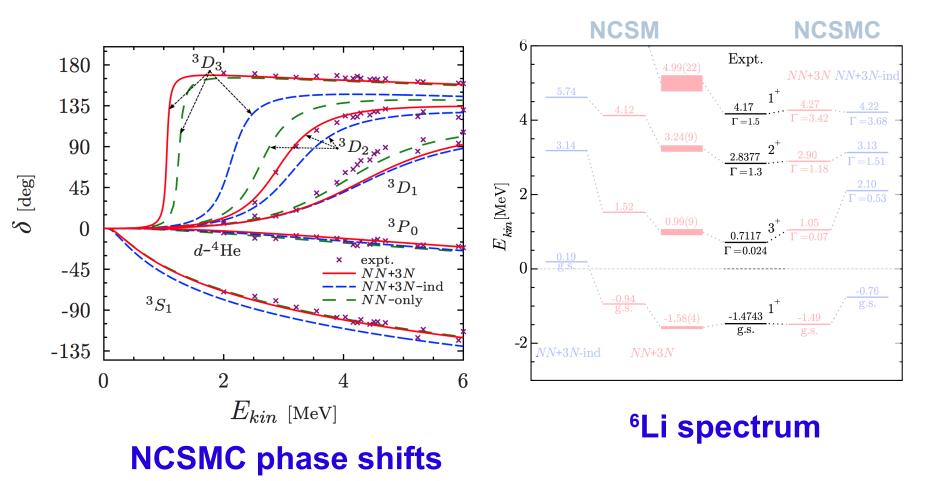
Worked out by Van Kolck, Keiser, Meissner, Epelbaum, Machleidt, ...

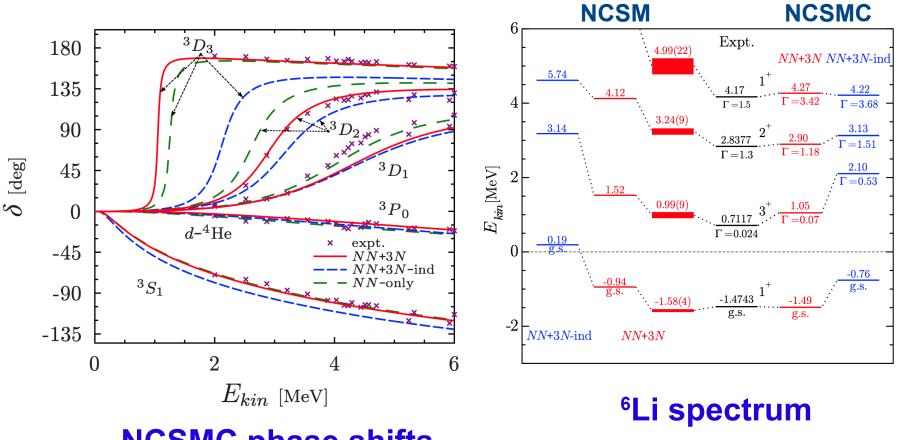

Nuclear interaction


- Two- plus three-nucleon (NN+3N) forces from chiral effective field theory (EFT):
 - NN potential at N³LO (by Entem & Machleidt).
 - 3N force at N²LO (in the local form by Navrátil) with: Λ_{3N} = 500 MeV, constrained to reproduce ³H binding energy and b-decay halflife.
 - 'Soften' the interactions using unitary transformations:Similarity Renormalization Group (SRG) method (λ=2.0 fm⁻¹).

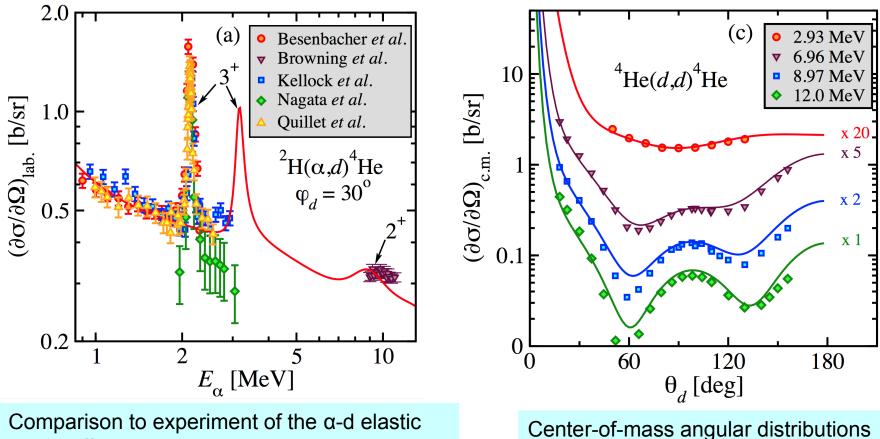

Meissner, Epelbaum, Machleidt, ...

- •HO expansion at N_{max} =11, $\hbar\Omega$ = 20MeV
- Fifteen discrete eigenstates of ⁶Li
- Seven deuteron pseudostates





NCSMC phase shifts

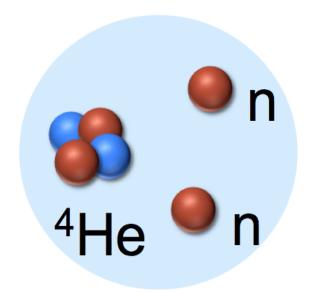


NCSMC phase shifts

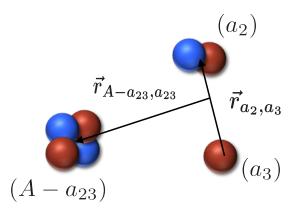
26 ULNL-PRES-667406

Asymptotic normalization constants ratio

	C ₂ (D-wave)/C ₀ (S-wave)
NCSMC	-0.027
Exp. PRC 59 598 (1999)	-0.025(6)(10)
Exp. PRL 81 1187 (1998)	0.0003(9)

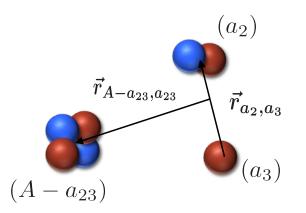

recoil differential cross section at φ =30°. NCSMC with NN+3N potential at λ =2.0 fm⁻¹

Lawrence Livermore National Laboratory


at different incident energies E_d

⁴He+n+n

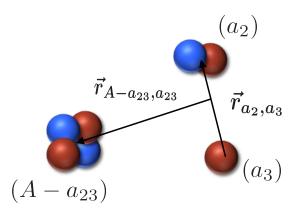
⁶**He:** 2 neutron halo (⁴He-n-n)



Extension to three-body cluster

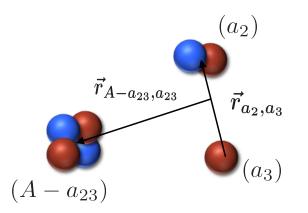
S. Quaglioni, P. Navratil, G. Hupin

C. Romero-Redondo



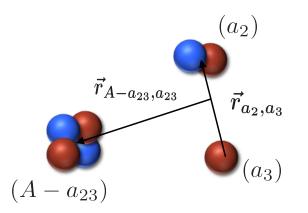
Extension to three-body cluster

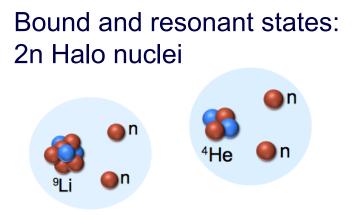
Why?



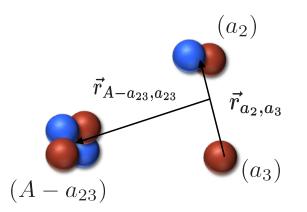
Extension to three-body cluster

Bound and resonant states: 2n Halo nuclei

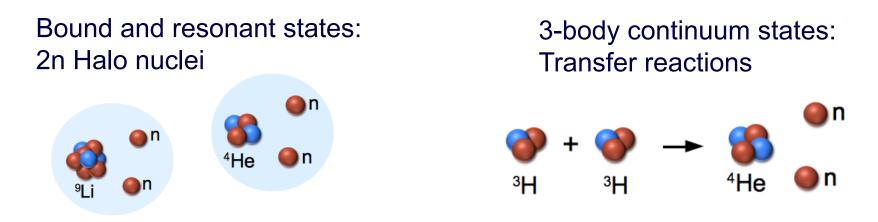


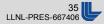

Extension to three-body cluster

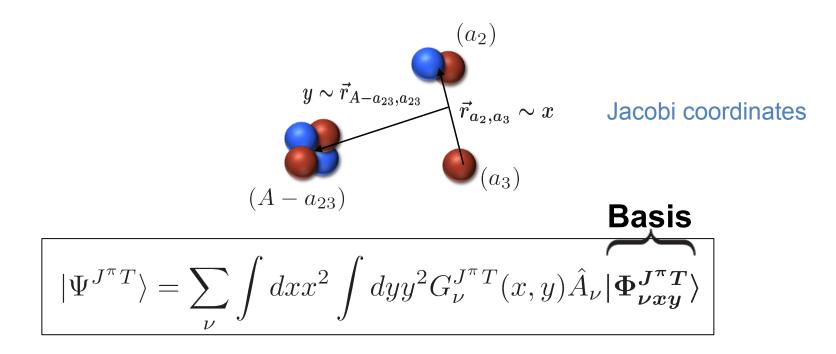
Bound and resonant states: 2n Halo nuclei

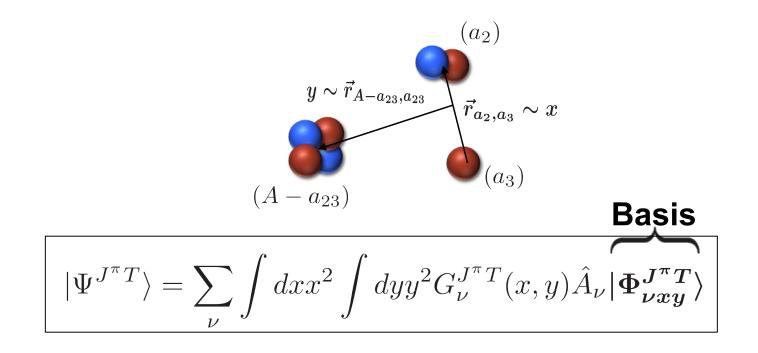


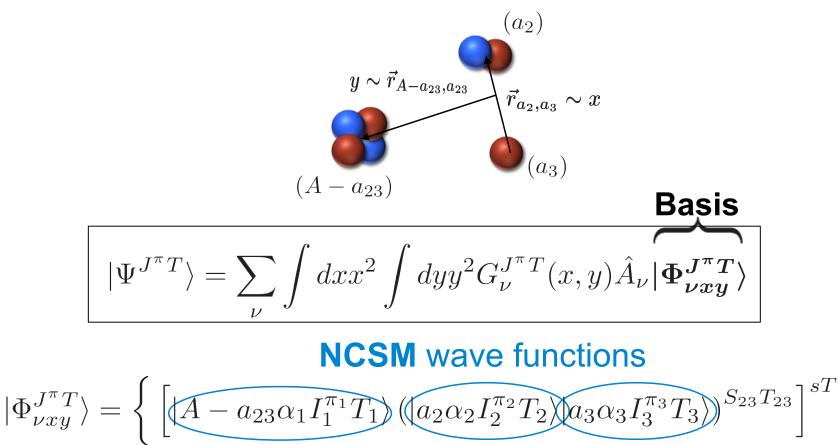
Extension to three-body cluster

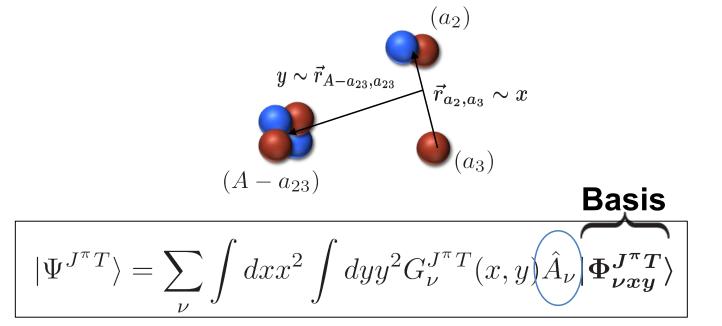



3-body continuum states: Transfer reactions




Extension to three-body cluster





$$|\Phi_{\nu xy}^{J^{\pi}T}\rangle = \left\{ \left[|A - a_{23}\alpha_1 I_1^{\pi_1} T_1\rangle \left(|a_2\alpha_2 I_2^{\pi_2} T_2\rangle |a_3\alpha_3 I_3^{\pi_3} T_3\rangle \right)^{S_{23}T_{23}} \right]^{sT} \\ \left(Y_{\ell_x} (\hat{r}_{a_2,a_3}) Y_{\ell_y} (\hat{r}_{A-a_{23},a_{23}}) \right)^L \right\}^{J^{\pi}T} \frac{\delta(x - r_{a_2,a_3})}{xr_{a_2,a_3}} \frac{\delta(y - r_{A-a_{23},a_{23}})}{yr_{A-a_{23},a_{23}}}$$

$$\left(Y_{\ell_x}(\hat{r}_{a_2,a_3})Y_{\ell_y}(\hat{r}_{A-a_{23},a_{23}})\right)^L \right\}^{J^{\pi}T} \frac{\delta(x-r_{a_2,a_3})}{xr_{a_2,a_3}} \frac{\delta(y-r_{A-a_{23},a_{23}})}{yr_{A-a_{23},a_{23}}}$$

Intercluster antisymmetrizer

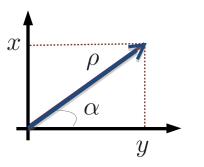
$$|\Phi_{\nu xy}^{J^{\pi}T}\rangle = \left\{ \left[|A - a_{23}\alpha_1 I_1^{\pi_1}T_1\rangle \left(|a_2\alpha_2 I_2^{\pi_2}T_2\rangle |a_3\alpha_3 I_3^{\pi_3}T_3\rangle \right)^{S_{23}T_{23}} \right]^{sT} \\ \left(Y_{\ell_x}(\hat{r}_{a_2,a_3})Y_{\ell_y}(\hat{r}_{A-a_{23},a_{23}}) \right)^L \right\}^{J^{\pi}T} \frac{\delta(x - r_{a_2,a_3})}{xr_{a_2,a_3}} \frac{\delta(y - r_{A-a_{23},a_{23}})}{yr_{A-a_{23},a_{23}}}$$

$$|\Psi^{J^{\pi}T}\rangle = \sum_{\nu} \int dx x^2 \int dy y^2 G_{\nu}^{J^{\pi}T}(x,y) \hat{A}_{\nu} |\Phi_{\nu xy}^{J^{\pi}T}\rangle$$

Schrödinger equation

$$\left(\mathcal{H} - E\right) \left| \Psi^{J^{\pi}T} \right\rangle = 0$$

$$\sum_{\nu} \int dx dy x^2 y^2 \left[\mathcal{H}_{\nu'\nu}(x, y, x', y') - E \mathcal{N}_{\nu'\nu}(x, y, x', y') \right] G_{\nu}^{J^{\pi}T}(x, y) = 0$$

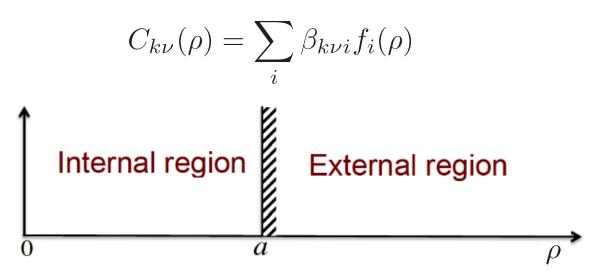

Hamiltonian Kernel Norm kernel $\langle \Phi^{J^{\pi}T}_{\nu'x'y'} | \hat{A}_{\nu'} \mathcal{H} \hat{A}_{\nu} | \Phi^{J^{\pi}T}_{\nu xy} \rangle \quad \langle \Phi^{J^{\pi}T}_{\nu'x'y'} | \hat{A}^2 | \Phi^{J^{\pi}T}_{\nu xy} \rangle$

ſ

Hyperspherical coordinates:

$$\rho = \sqrt{x^2 + y^2}, \quad \alpha = \arctan(x/y)$$

After changing to hyperspherical coordinates and integrating in α, α' :


$$\sum_{\nu k} \int d\rho \rho^5 \left[\bar{\mathcal{H}}_{\nu'\nu}^{k'k}(\rho',\rho) - E \frac{\delta(\rho-\rho')}{\rho^5} \delta_{\nu'\nu} \delta_{k'k} \right] C_{k\nu}^{J^{\pi}T}(\rho) = 0$$

Coupled-channel microscopic R-matrix method on a Lagrange mesh*

*M. Hesse, J.-M. Sparenberg 1, E Van Raemdonck, D. Baye. Nuclear Physics A 640 (1998) 37-51

Internal region: expansion on a basis ($\rho < a$)

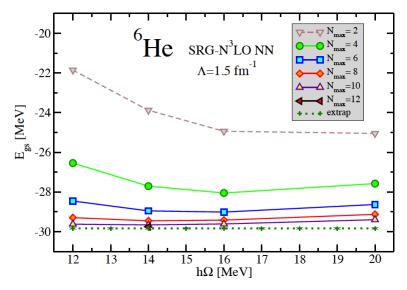
External region: known asymptotic behaviour ($\rho > a$)

* Bound state: $C_{k\nu}(\rho) = A_{k\nu}\sqrt{\kappa\rho}K_{k+2}(\kappa\rho)$

* Continuum state: $C_{k\nu}(\rho) = A_{k\nu} \left[H_k^-(\kappa\rho) \delta_{\nu,\nu'} \delta_{k,k'} - S_{\nu k,\nu' k'} H_k^+(\kappa\rho) \right]$

⁴He+n+n

NCSM/RGM results

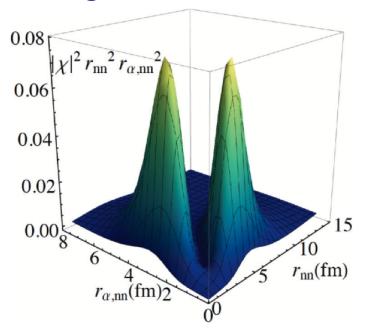

- n+n+⁴He, N_{max}= 11, $\hbar\Omega$ = 14 MeV
- SRG-N³LO NN-only interaction with λ =1.5 fm⁻¹

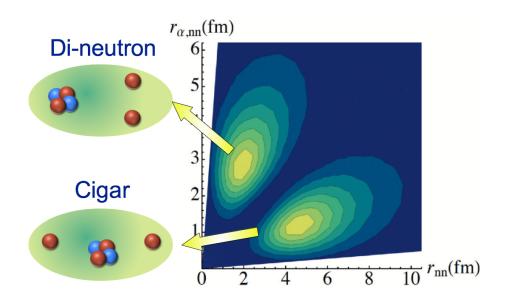
Comparison with NCSM:

- ~ 1MeV difference in E_{gs} due to excitations of the ⁴He core only included in the NCSM calculation.

-Contrary to NCSM, NCSM/RGM n+n+⁴He w.f. Has the appropriate asymptotic behavior.

⁶He ground state, NCSM

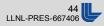


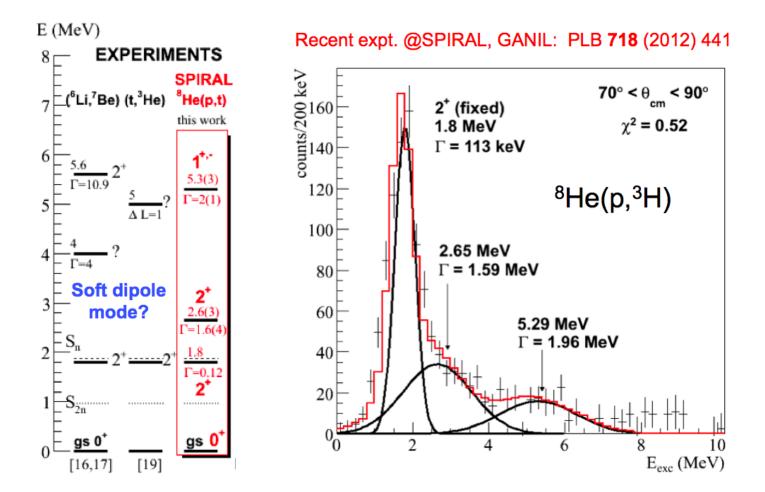

HO model space	Eg.s. (⁴He) [MeV] (NCSM)	<i>E</i> g.s. (⁶ He) [MeV] (NCSM)	Eg.s. (⁶ He) [MeV] (NCSM/RGM)
<i>N</i> max = 12	-28.224	-29.658	-28.697
Extrapolation	-28.230(5)	-29.84(4)	-28.70(3)

S. Quaglioni, CRR, P. Navrátil PRC 88, 034320 (2013)

⁴He+n+n. Ground state

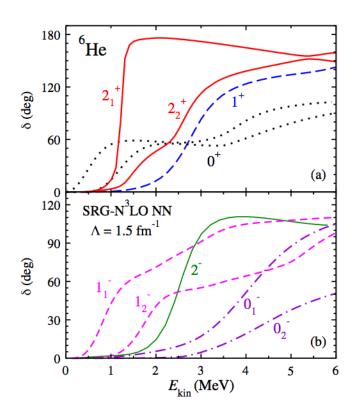
⁶He g.s. Probability distribution



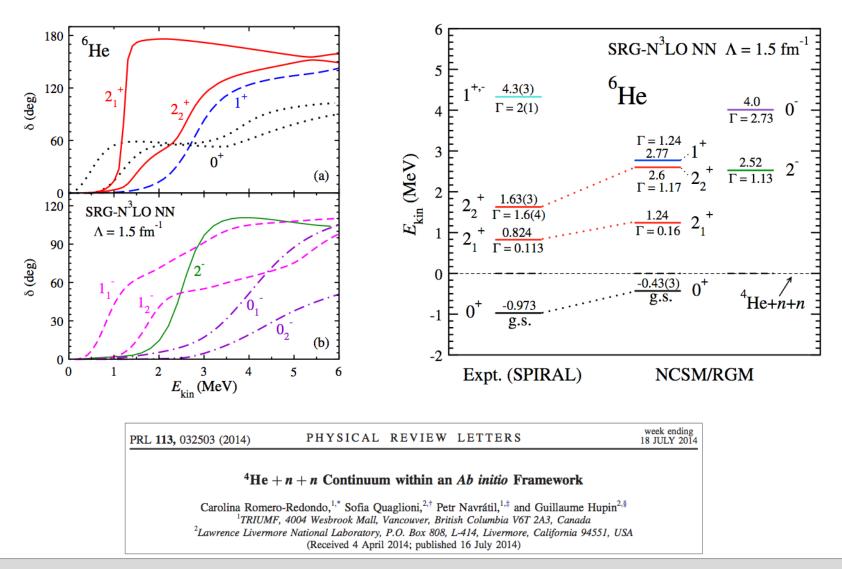

PHYSICAL REVIEW C 88, 034320 (2013)

Three-cluster dynamics within an *ab initio* framework

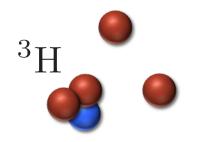
Sofia Quaglioni,^{1,*} Carolina Romero-Redondo,^{2,†} and Petr Navrátil^{2,‡} ¹Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA ²TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada (Received 1 August 2013; published 26 September 2013)



⁴He+n+n. Experimental picture



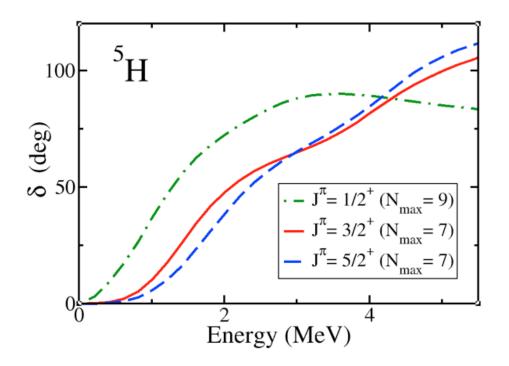
⁴He+n+n. Spectrum



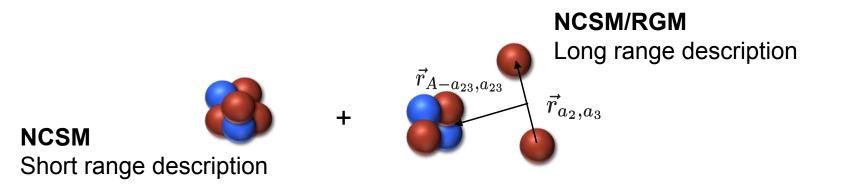
⁴He+n+n. Spectrum

³H+n+n

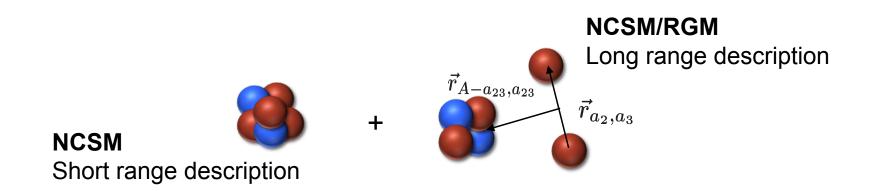
Experimental Picture:


	1/2+	3/2+	5/2+
PRL 87 092501 (2001)	$(1.7\pm 0.3, 1.9\pm 0.4)$	(-,-)	(-,-)
NPA 719 229c (2003)	$(1.8 \pm 0.1, < 0.5)$	(-,-)	$(2.7 \pm 0.1, < 0.5)$
PRC 72 064612 (2005)	(1.8, 1.3)	(> 2.5, -)	(> 2.5, -)
EPJ A 25 315 (2005)	(2, 2.5)	(> 2.5, -)	(> 2.5, -)
PRL 91 162504 (2003)	(3,6)	(-,-)	(-, -)
EPJ A 24 231 (2005)	$(5.5\pm 0.2, 5.4\pm 0.6)$	(> 10, > 2)	(> 10, > 2)

³H+n+n (preliminary)


 Same accurate soft NN potential (SRG-evolved chiral N³LO with λ=1.5fm⁻¹)

NSCM ³H wave function



Summary

- We are able to study nuclear systems:
 - Bound and resonant states in structure problems
 - Continuum states for reaction problems
- Results for
 - Structure and dynamics of ⁴He+d system
 - (shown importance of 3N forces and short range correlations)
 - Ground state of ⁶He
 - Continuum ⁴He+n+n
- Preliminary calculations for ³H+n+n basis

Outlook

- Improvement of current calculations
 - Introduce core excitations by coupling the (A-2)-n-n basis to Abody NCSM eigenstates (NCSMC)
 - Run calculations with 3N force
- Transfer reactions, i.e, ³H(³H,2n)⁴He
 - Derive and calculate couplings between two and three body clusters

