Bogoliubov coupled cluster theory Or: Many-body methods for open-shell nuclei

A. Signoracci ${ }^{1,2}$, T. Duguet ${ }^{3,4}$, G. Hagen ${ }^{1,2}$, G.R. Jansen ${ }^{1,2}$

${ }^{1}$ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
${ }^{2}$ Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
${ }^{3}$ Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
${ }^{4}$ National Superconducting Cylcotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

TRIUMF workshop, 17-20 February 2015, Vancouver, BC

Motivation: computing open-shell nuclei

- Establish techniques to provide reliable predictions for experimental measurements
- Include assessment of uncertainty from many-body method
- Expansion techniques are ideal, if contributions are smaller at higher orders
- Exclusion of nuclear reaction dynamics and continuum at the moment
- Multiple methods are necessary
- Access to other observable properties beyond energy of strong interest
- Ab initio methods have been developed
- CC, IM-SRG, SCGF, CI/SM
- Three different philosophies
(1) Multireference (MR-CC, MR-IM-SRG)
(2) Effective interaction (from CC, NCSM, IM-SRG)
(3) Symmetry breaking (BCC, Gorkov Green's function methods)
- Require accurate treatment of nuclear forces to reproduce experiment
- Ab initio calculations of nuclei provide feedback on accuracy of potentials

Ab initio techniques for (truly) open-shell nuclei

- Expansion techniques break down for calculations of (truly) open-shell nuclei
- Extensions beyond doubly-closed subshell nuclei exist via multi-reference methods (e.g., particle-attached equation-of-motion CC)
- Computationally demanding as more particles are added
- Not suited to calculate truly open-shell nuclei due to phase transition
- Reference state explicitly breaking symmetry can account for superfluid nature
- Build CC techniques around Bogoliubov vacuum
- More relevant away from light isotopes
- K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984)
- W.A. Lahoz and R.F. Bishop, Z. Phys. B 73, 363 (1988)
- Maintain single reference nature (formal and computational simplicity)
- Difficulties
- Quasiparticle basis- rewrite Hamiltonian normal-ordered wrt HFB vacuum
- Diagrammatic techniques- rules (e.g. from Shavitt and Bartlett) need modification
- Additional constraint equation- average particle number
- Computational aspect- less expedient scaling

Ab initio techniques for (truly) open-shell nuclei

- Expansion techniques break down for calculations of (truly) open-shell nuclei
- Extensions beyond doubly-closed subshell nuclei exist via multi-reference methods (e.g., particle-attached equation-of-motion CC)
- Computationally demanding as more particles are added
- Not suited to calculate truly open-shell nuclei due to phase transition
- Reference state explicitly breaking symmetry can account for superfluid nature
- Build CC techniques around Bogoliubov vacuum
- More relevant away from light isotopes
- K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984)
- W.A. Lahoz and R.F. Bishop, Z. Phys. B 73, 363 (1988)
- L.Z. Stolarczyk and H.J. Monkhorst, Mol. Phys. 108, 3067 (2010)
- Maintain single reference nature (formal and computational simplicity)
- Difficulties
- Quasiparticle basis- rewrite Hamiltonian normal-ordered wrt HFB vacuum
- Diagrammatic techniques- rules (e.g. from Shavitt and Bartlett) need modification
- Additional constraint equation- average particle number
- Computational aspect- less expedient scaling

Ab initio techniques for (truly) open-shell nuclei

- Expansion techniques break down for calculations of (truly) open-shell nuclei
- Extensions beyond doubly-closed subshell nuclei exist via multi-reference methods (e.g., particle-attached equation-of-motion CC)
- Computationally demanding as more particles are added
- Not suited to calculate truly open-shell nuclei due to phase transition
- Reference state explicitly breaking symmetry can account for superfluid nature
- Build CC techniques around Bogoliubov vacuum
- More relevant away from light isotopes
- K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984)
- W.A. Lahoz and R.F. Bishop, Z. Phys. B 73, 363 (1988)
- L.Z. Stolarczyk and H.J. Monkhorst, Mol. Phys. 108, 3067 (2010)
- Maintain single reference nature (formal and computational simplicity)
- Difficulties
- Quasiparticle basis- rewrite Hamiltonian normal-ordered wrt HFB vacuum
- Diagrammatic techniques- rules (e.g. from Shavitt and Bartlett) need modification
- Additional constraint equation- average particle number
- Computational aspect- less expedient scaling

$$
n_{p}^{i} n_{h}^{j} \text { in } \mathrm{CC} \rightarrow\left(n_{p}+n_{h}\right)^{i+j} \text { in BCC }
$$

Bogoliubov algebra

- Bogoliubov transformation

$$
c_{l}^{\dagger}=\sum_{k} U_{l k}^{*} \beta_{k}^{\dagger}+V_{l k} \beta_{k} \quad c_{l}=\sum_{k} U_{l k} \beta_{k}+V_{l k}^{*} \beta_{k}^{\dagger}
$$

- Bogoliubov vacuum $|\Phi\rangle \equiv \mathcal{C} \prod \beta_{j}|0\rangle$
- Natural extension from particle-hole language
- Simplifies some aspects of standard CC theory
- Rewrite Hamiltonian, i.e. normal order with respect to $|\Phi\rangle$
- Derived including three-body interactions (to include implicit two-body component)

$$
\begin{aligned}
H & =H^{00}+H^{11}+H^{20}+H^{02}+\ldots \\
& =\tilde{H}^{00}+\sum_{k_{1} k_{2}} \tilde{H}_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}+\frac{1}{2!} \sum_{k_{1} k_{2}}\left\{\tilde{H}_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}+\tilde{H}_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}\right\}+\ldots
\end{aligned}
$$

Each matrix element can be written as a function of $N N, N N N, U, V$

Bogoliubov coupled cluster theory

- Complete details can be found at A. Signoracci et al., arXiv:1412:2696
- Hamiltonian replaced by grand canonical potential $\Omega=H-\lambda A$
- Solution for nucleus with A_{0} particles given by

$$
\Omega|\Psi\rangle=\Omega_{0}|\Psi\rangle
$$

- Constraint equation $A_{0}=\frac{\langle\Psi| A|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}$
- Exponential ansatz $|\Psi\rangle=e^{\mathcal{T}}|\Phi\rangle$
- Quasiparticle cluster operator $\mathcal{T}=\mathcal{T}_{1}+\mathcal{T}_{2}+\mathcal{T}_{3}+\ldots$

$$
\begin{aligned}
& \mathcal{T}_{1}=\frac{1}{2!} \sum_{k_{1} k_{2}} \tilde{\mathbf{t}}_{k_{1} k_{2}} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \\
& \mathcal{T}_{2}=\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} \tilde{\mathbf{t}}_{k_{1} k_{2} k_{3} k_{4}} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}^{\dagger}
\end{aligned}
$$

- Similarity transformed grand canonical potential $\bar{\Omega}=e^{-\mathcal{T}} \Omega e^{\mathcal{T}}$

Extension of standard coupled cluster theory

- Motivated by procedure in standard coupled cluster theory
- Produce eigenvalue equation $\bar{\Omega}|\Phi\rangle=\Omega_{0}|\Phi\rangle$
- Utilize Baker-Campbell-Hausdorff expansion
- Truncate to four \mathcal{T} operators (six with explicit three-body contribution)
- Limit to connected terms only
- Only quasiparticle creation operators in $\mathcal{T} \rightarrow \Omega$ to the left

$$
\bar{\Omega}=\Omega+(\Omega \mathcal{T})_{C}+\frac{1}{2!}(\Omega \mathcal{T} \mathcal{T})_{C}+\frac{1}{3!}(\Omega \mathcal{T} \mathcal{T} \mathcal{T})_{C}+\frac{1}{4!}(\Omega \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T})_{C}=\left(\Omega e^{\mathcal{T}}\right)_{C}
$$

- Subtract reference energy for convenience $\Omega_{N}=\Omega-\langle\Phi| \Omega|\Phi\rangle$
- Produce energy and amplitude equations

$$
\begin{aligned}
\langle\Phi| \bar{\Omega}_{N}|\Phi\rangle_{C} & =\Delta \Omega_{0} \\
\left\langle\Phi^{\alpha \beta \cdots}\right| \bar{\Omega}_{N}|\Phi\rangle_{C} & =0
\end{aligned}
$$

- Solve under constraint of average particle number

$$
A_{0}=\frac{\langle\Phi| e^{\mathcal{T}^{\dagger}} A e^{\mathcal{T}}|\Phi\rangle}{\langle\Phi| e^{\mathcal{T}^{\dagger}} e^{\mathcal{T}}|\Phi\rangle}=\langle\Phi| e^{\mathcal{T}^{\dagger}} A e^{\mathcal{T}}|\Phi\rangle_{\mathrm{C}}=\langle\Phi|(1+\Lambda) e^{-\mathcal{T}} A e^{\mathcal{T}}|\Phi\rangle_{\mathrm{C}}
$$

CCEI calculations in the sd shell

- Production of effective interactions
- Similar to prior work, now focusing on full interactions in sd shell
- Requires solution of ${ }^{16,17,18} \mathrm{O},{ }^{17,18} \mathrm{~F},{ }^{18} \mathrm{Ne}$ with CC methods
- Projection onto valence space components for shell model calculations
- More complicated than prior work, but straightforward extension
- Current results for $N_{\max }=10, E_{3 \max }=10$
- Calculations underway to match prior bases for publication
- Expect minimal effect in low-lying spectra
- Nevertheless, all results are preliminary
- Ongoing work on operators
- Effective operators in the valence space
- Implemented one-body component of charge radius operator
- Induced two-body operator necessary, under investigation
- Will not show results at the moment
- Soon can treat $B(E 2), B(G T)$, double beta decay, etc. consistently

CCEI calculations in the sd shell

- Production of effective interactions
- Similar to prior work, now focusing on full interactions in sd shell
- Requires solution of ${ }^{16,17,18} \mathrm{O},{ }^{17,18} \mathrm{~F},{ }^{18} \mathrm{Ne}$ with CC methods
- Projection onto valence space components for shell model calculations
- More complicated than prior work, but straightforward extension
- Additional truncation
- Current results for $N_{\text {max }}=10, E_{3 \text { max }}=10$
- Calculations underway to match prior bases for publication
- Expect minimal effect in low-lying spectra
- Nevertheless, all results are preliminary
- Effective operators in the valence space
- Implemented one-body component of charge radius operator
- Induced two-body operator necessary, under investigation
- Will not show results at the moment
- Soon can treat $B(E 2), B(G T)$, double beta decay, etc. consistently

CCEI calculations in the sd shell

- Production of effective interactions
- Similar to prior work, now focusing on full interactions in sd shell
- Requires solution of ${ }^{16,17,18} \mathrm{O},{ }^{17,18} \mathrm{~F},{ }^{18} \mathrm{Ne}$ with CC methods
- Projection onto valence space components for shell model calculations
- More complicated than prior work, but straightforward extension
- Additional truncation
- Current results for $N_{\text {max }}=10, E_{3 \text { max }}=10$
- Calculations underway to match prior bases for publication
- Expect minimal effect in low-lying spectra
- Nevertheless, all results are preliminary
- Ongoing work on operators
- Effective operators in the valence space
- Implemented one-body component of charge radius operator
- Induced two-body operator necessary, under investigation
- Will not show results at the moment
- Soon can treat $B(E 2), B(G T)$, double beta decay, etc. consistently

Binding energies in sd shell

All isotopes can now be computed

Representative spectra

No fine-tuning, essentially no parameters
Deformed system

Representative spectra

No fine-tuning, essentially no parameters
One proton systems

Representative spectra

No fine-tuning, essentially no parameters
One proton systems

Representative spectra

No fine-tuning, essentially no parameters
Odd mass nucleus

Representative spectra

No fine-tuning, essentially no parameters
Mirror nuclei

Representative spectra

No fine-tuning, essentially no parameters
Mirror nuclei

Current status of ab initio BCC theory

- Formalism
- Derivation of BCCSD complete, evaluated equivalently in multiple ways
- Includes two- and three-body microscopic forces
- Can recover standard CCSD in Slater determinant limit
- Produce more general extended coupled cluster method in straightforward limit
- BCCSDT derivation straightforward from application of diagrammatic rules
- Utilize $N N$ interactions from chiral potential (+RG)
- Bogoliubov vacuum from solution of HFB equations
- m-scheme version of HFB code
- Initialized with diagonal spherical BCS solutions
- Utilizes symmetry properties (subblock matrices in most reduced form)
- BCCSD derived and coded in m-scheme with intermediates
- BCCSD energy and amplitude equations contain 27 diagrams
- Intermediates reduce computational time and formal complexity
- Slight issues remaining in comparison to benchmark CC calculations
- Evaluation of one- and two- body operators
- One-body operator A essential to solve system of equations
- Two-body operator A^{2} provides measure of symmetry breaking
- Extension to other observables straightforward
- Limited to ground state until EOM-BCC is implernented

Current status of ab initio BCC theory

- Formalism

- Derivation of BCCSD complete, evaluated equivalently in multiple ways
- Includes two- and three-body microscopic forces
- Can recover standard CCSD in Slater determinant limit
- Produce more general extended coupled cluster method in straightforward limit
- BCCSDT derivation straightforward from application of diagrammatic rules
- Implementation
- Utilize $N N$ interactions from chiral potential (+RG)
- Bogoliubov vacuum from solution of HFB equations
- m-scheme version of HFB code
- Initialized with diagonal spherical BCS solutions
- Utilizes symmetry properties (subblock matrices in most reduced form)
- BCCSD derived and coded in m-scheme with intermediates
- BCCSD energy and amplitude equations contain 27 diagrams
- Intermediates reduce computational time and formal complexity
- Slight issues remaining in comparison to benchmark CC calculations
- Evaluation of one- and two- body operators
- One-body operator A essential to solve system of equations
- Two-body operator A^{2} provides measure of symmetry breaking
- Extension to other observables straightforward
- Limited to ground state until EOM-BCC is implemented

Proof-of-principle calculations: Methodology

- Illustration using BCCD
- Truncation to $\mathcal{T}=\mathcal{T}_{2}$
- Should include most important effects at lowest order
- Singles contribution corresponds to Thouless theorem; HFB solution used
- Does not provide convergence- triples required at least perturbatively
- HFB solution formally collapses to HF solution
- BCCSD equations in Slater determinant limit contain correlations beyond CCSD
- In practice, CC results for closed-shell nuclei are reproduced exactly
- Comparison to CC results beyond closed-shell nuclei
- HFB reference state is constrained to correct particle number on average
- BCC equations are iterated with Lagrange constraint on particle number (Z and N)
- Computation of particle number via $\Lambda=\mathcal{T}^{\dagger}$ valid at 1 st order
- Extensions of CC, e.g. EOM-CC, provide comparison to BCC
- Allocated time on supercomputing machines for calculations (e.g. TITAN)
- Parameters of the calculation
- Bare NNI Oont from A Fkström et al., PRL 110, 192502 (2013)
- Spherical harmonic oscillator single particle basis defined by $\hbar \omega$
- Ground states of ${ }^{16,18,20} \mathrm{O},{ }^{18} \mathrm{Ne},{ }^{20} \mathrm{Mg}$ calculated in $N_{\text {max }}=6$ model space
- Current computational limit reached at $N=8$ oscillator shell (re-coding necessary)
- Intrinsic Hamiltonian treated approximately (HFB solution breaks symmetry)

Proof-of-principle calculations: Methodology

- Illustration using BCCD
- Truncation to $\mathcal{T}=\mathcal{T}_{2}$
- Should include most important effects at lowest order
- Singles contribution corresponds to Thouless theorem; HFB solution used
- Does not provide convergence- triples required at least perturbatively
- Comparison to CC results in closed-shell nuclei
- HFB solution formally collapses to HF solution
- BCCSD equations in Slater determinant limit contain correlations beyond CCSD
- In practice, CC results for closed-shell nuclei are reproduced exactly
- HFB reference state is constrained to correct particle number on average
- BCC equations are iterated with Lagrange constraint on particle number (Z and N)
- Computation of particle number via $\Lambda=T^{i}$ valid at 1st order
- Extensions of CC, e.g. EOM-CC, provide comparison to BCC
- Allocated time on supercomputing machines for calculations (e.g. TITAN)
- Parameters of the calculation
- Bare NNLO opt from A.Ekström et al., PRL 110, 192502 (2013)
- Spherical harmonic oscillator single particle basis defined by $\hbar \omega$
- Ground states of ${ }^{16,18,20} \mathrm{O},{ }^{18} \mathrm{Ne},{ }^{20} \mathrm{Mg}$ calculated in $N_{\text {max }}=6$ model space
- Current computational limit reached at $N=8$ oscillator shell (re-coding necessary)
- Intrinsic Hamiltonian treated approximately (HFB solution breaks symmetry)

Proof-of-principle calculations: Methodology

- Illustration using BCCD
- Truncation to $\mathcal{T}=\mathcal{T}_{2}$
- Should include most important effects at lowest order
- Singles contribution corresponds to Thouless theorem; HFB solution used
- Does not provide convergence- triples required at least perturbatively
- Comparison to CC results in closed-shell nuclei
- HFB solution formally collapses to HF solution
- BCCSD equations in Slater determinant limit contain correlations beyond CCSD
- In practice, CC results for closed-shell nuclei are reproduced exactly
- Comparison to CC results beyond closed-shell nuclei
- HFB reference state is constrained to correct particle number on average
- BCC equations are iterated with Lagrange constraint on particle number (Z and N)
- Computation of particle number via $\Lambda=\mathcal{T}^{\dagger}$ valid at 1 st order
- Extensions of CC, e.g. EOM-CC, provide comparison to BCC
- Allocated time on supercomputing machines for calculations (e.g. TITAN)
- Bare NNLO opt from A.Ekström et al., PRL 110, 192502 (2013)
- Spherical harmonic oscillator single particle basis defined by $\hbar \omega$
- Ground states of ${ }^{16,18,20} \mathrm{O},{ }^{18} \mathrm{Ne},{ }^{20} \mathrm{Mg}$ calculated in $N_{\text {max }}=6$ model space
- Current computational limit reached at $\mathrm{N}=8$ oscillator shell (re-coding necessary)
- Intrinsic Hamiltonian treated approximately (HFB solution breaks symmetry)

Proof-of-principle calculations: Methodology

- Illustration using BCCD
- Truncation to $\mathcal{T}=\mathcal{T}_{2}$
- Should include most important effects at lowest order
- Singles contribution corresponds to Thouless theorem; HFB solution used
- Does not provide convergence- triples required at least perturbatively
- Comparison to CC results in closed-shell nuclei
- HFB solution formally collapses to HF solution
- BCCSD equations in Slater determinant limit contain correlations beyond CCSD
- In practice, CC results for closed-shell nuclei are reproduced exactly
- Comparison to CC results beyond closed-shell nuclei
- HFB reference state is constrained to correct particle number on average
- BCC equations are iterated with Lagrange constraint on particle number (Z and N)
- Computation of particle number via $\Lambda=\mathcal{T}^{\dagger}$ valid at 1 st order
- Extensions of CC, e.g. EOM-CC, provide comparison to BCC
- Allocated time on supercomputing machines for calculations (e.g. TITAN)
- Parameters of the calculation
- Bare NNLO opt from A.Ekström et al., PRL 110, 192502 (2013)
- Spherical harmonic oscillator single particle basis defined by $\hbar \omega$
- Ground states of ${ }^{16,18,20} \mathrm{O},{ }^{18} \mathrm{Ne},{ }^{20} \mathrm{Mg}$ calculated in $N_{\text {max }}=6$ model space
- Current computational limit reached at $\mathrm{N}=8$ oscillator shell (re-coding necessary)
- Intrinsic Hamiltonian treated approximately (HFB solution breaks symmetry)

${ }^{16} \mathrm{O}$: Energies and extrapolations

CCSD energy as a function of $\hbar \omega$

${ }^{16} \mathrm{O}$: Energies and extrapolations

CCSD energy as a function of effective size of basis L_{2}

Infrared extrapolation of R.J. Furnstahl et al., J. Phys. G 42034032 (2015)
Reliable if ultraviolet contamination is small

Open shell nuclei: Energies and extrapolations

$$
E(L)=E_{\infty}+A_{\infty} e^{-2 k_{\infty} L} \quad L=L_{2}=\sqrt{2(N+3 / 2+2)} \sqrt{\hbar /(M \omega)}
$$

Open shell nuclei: Energies and extrapolations

$$
E(L)=E_{\infty}+A_{\infty} e^{-2 k_{\infty} L} \quad L=L_{2}=\sqrt{2(N+3 / 2+2)} \sqrt{\hbar /(M \omega)}
$$

Compiled results of sd-shell nuclei

Nucleus	$E_{N=6}^{B C C}$	$E_{N=6}^{C C}$	E_{∞}	$E_{N=12}^{C C}$	$E^{\exp }$
${ }^{16} \mathrm{O}$	-119.110	-119.110	-124.821	-123.453	-127.619
${ }^{18} \mathrm{O}$	-124.440	-126.476	-130.738	-132.990	-139.808
${ }^{20} \mathrm{O}$	-131.428	n / a	-139.144	n / a	-151.371
${ }^{18} \mathrm{Ne}$	-115.413	-117.927	-122.089	-124.850	-132.143
${ }^{20} \mathrm{Mg}$	-112.237	n / a	-119.996	n / a	-134.480

- BCCD extrapolated results given by E_{∞}
- CCSD results
- For ${ }^{16} \mathrm{O}$, standard CCSD calculation
- For ${ }^{18} \mathrm{O},{ }^{18} \mathrm{Ne}$, two-particles-attached equation-of-motion CCSD with $\hbar \omega=26 \mathrm{MeV}$
- Future comparison of computational aspects of BCC and EOM-CC necessary

Assessing symmetry breaking

- Evaluation of particle number via one-body density matrix
- Constrained in BCC system of equations to correct number on average
- Interested in evaluating conservation of symmetry upon solution
- HFB reference state
- Separately constrained to produce right particle number on average
- Variance $\sigma_{A}=\sqrt{\left\langle A^{2}\right\rangle-\langle A\rangle^{2}}$ relates amount of symmetry breaking
- For closed shell nuclei, HFB equations reduce exactly to HF result ($\sigma_{A}=0$)
- BCC results
- Expect symmetry to be restored as more correlations are added
- In exact result ($A p-A h$ excitations), physical symmetries restored
- For BCCD in small model spaces, this is far from maintained
- Amount of symmetry breaking on par with initial HFB state
- Local fluctuations present ($A=20$ mirror nuclei differ significantly)

Table: σ_{A} at $\mathrm{N}=6$

Nucleus	HFB	BCCD
${ }^{16} \mathrm{O}$	0.000	0.000
${ }^{18} \mathrm{O}$	1.666	1.677
${ }^{20} \mathrm{O}$	1.699	1.843
${ }^{18} \mathrm{Ne}$	1.663	1.662
${ }^{20} \mathrm{Mg}$	1.691	1.596

Short-term outlook

- Converged results of open-shell nuclei forthcoming
- Compare CI with CC effective interactions to BCC
- Benchmark results against in-medium SRG/Gorkov-Green's function results
- Implement one- and induced two-body operators to evaluate charge radii
- Compute other observables to provide predictions for upcoming experiments
- Attempt other model spaces besides sd shell
- Advantage of m-scheme implementation compared to J-coupled scheme
- Currently, spherical single particle basis and spherical BCS solution employed
- Permits treatment of doubly-open-shell nuclei
- Upcoming evaluation of potential energy surfaces $\left({ }^{24} \mathrm{Mg}\right)$ ab initio
- Go beyond $N=8$ oscillator shell in BCC calculations
- Distribution of \mathcal{T}_{2} amplitudes required
- Further optimization of code desirable
- Alternatively, implement BCC equations in J-scheme
- Significant improvement due to reduction of dimensions
- Only requires projection of $U(1)$ symmetry to restore physical quantum numbers

Short-term outlook

- Converged results of open-shell nuclei forthcoming
- Compare CI with CC effective interactions to BCC
- Benchmark results against in-medium SRG/Gorkov-Green's function results
- Implement one- and induced two-body operators to evaluate charge radii
- Compute other observables to provide predictions for upcoming experiments
- Attempt other model spaces besides sd shell
- Utilize deformed basis in BCC
- Advantage of m-scheme implementation compared to J-coupled scheme
- Currently, spherical single particle basis and spherical BCS solution employed
- Permits treatment of doubly-open-shell nuclei
- Upcoming evaluation of potential energy surfaces $\left({ }^{24} \mathrm{Mg}\right)$ ab initio
- Distribution of \mathcal{T}_{2} amplitudes required
- Significant improvement due to reduction of dimensions
- Only requires projection of $U(1)$ symmetry to restore physical quantum numbers

Short-term outlook

- Converged results of open-shell nuclei forthcoming
- Compare CI with CC effective interactions to BCC
- Benchmark results against in-medium SRG/Gorkov-Green's function results
- Implement one- and induced two-body operators to evaluate charge radii
- Compute other observables to provide predictions for upcoming experiments
- Attempt other model spaces besides sd shell
- Utilize deformed basis in BCC
- Advantage of m-scheme implementation compared to J-coupled scheme
- Currently, spherical single particle basis and spherical BCS solution employed
- Permits treatment of doubly-open-shell nuclei
- Upcoming evaluation of potential energy surfaces $\left({ }^{24} \mathrm{Mg}\right)$ ab initio
- Go beyond $\mathrm{N}=8$ oscillator shell in BCC calculations
- Distribution of \mathcal{T}_{2} amplitudes required
- Further optimization of code desirable
- Alternatively, implement BCC equations in J-scheme
- Significant improvement due to reduction of dimensions
- Only requires projection of $U(1)$ symmetry to restore physical quantum numbers

Outlook for BCC theory (including longer-term goals)

- Extend to equation-of-motion BCC
- Equation-of-motion BCC enables the computation of odd nuclei and excited states
- One-particle attached (or removed) is sufficient due to explicit treatment of pairing
- With one-body density matrices, allows for computation of observables, e.g. B(E2)
- Include three-body forces at least at normal-ordered two-body level
- Inclusion of three-body forces relevant for accurate results and trends
- Full treatment already derived in general indices
- Normal-ordered two-body contribution nearly derived in m-scheme implementation
- Verify that explicit three-body component can be neglected
- Projection of good quantum numbers
- Relevant once symmetry is spontaneously broken
- Physical state maintains symmetry
- Restore symmetry in approximate treatment through projection
- Future implementation to restore $U(1)$ and $S O(3)$ symmetry
- Long-term extensions and ideas
- Advances in standard CC theory typically are relevant to BCC theory as well
- Standard coupled cluster theory is an active area of research
- Include continuum when necessary
- Incorporate nuclear dynamics, e.g. Lorentz Integral Transformation
- Provide insight on nuclear interactions
- Charge-exchange/beta-decay with isospin-invariant HFB solution

Backup slides

Comparison of spectra in ${ }^{24} \mathrm{~F}$

$$
\text { Same interaction used }\left(N_{\max }=10, E_{3 \max =10}\right)
$$

${ }^{24}$ F Level Scheme
Effect of model space? Induced three-body from Okubo-Lee-Suzuki?

Standard coupled cluster (CC) theory

- State of the art computational tool
- Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
- G. Hagen et al., Phys. Rev. C 82, 034330 (2010)
- Successfully implemented for ${ }^{24} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{132} \mathrm{Sn} \ldots$
- Exponential ansatz $|\Psi\rangle=e^{T}|\Phi\rangle$, where T is the cluster operator
- Cluster Operator

- Physical wavefunction is built through np-nh excitations of Slater determinant $|\Phi\rangle$
- Approximate solution to Schrödinger equation by truncating T
- Typically use HF solution as reference state $|\phi\rangle$
- Schrödinger equation with similarity-transformed Hamiltonian 7

Standard coupled cluster (CC) theory

- State of the art computational tool
- Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
- G. Hagen et al., Phys. Rev. C 82, 034330 (2010)
- Successfully implemented for ${ }^{24} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{132} \mathrm{Sn} \ldots$
- Exponential ansatz $|\Psi\rangle=e^{T}|\Phi\rangle$, where T is the cluster operator
- Cluster Operator $T=T_{1}+T_{2}+T_{3}+\ldots$

$$
\begin{aligned}
& T_{1}=\sum_{i a} t_{i}^{a} a^{\dagger} i \\
& T_{2}=\frac{1}{(2!)^{2}} \sum_{i j a b} t_{i j}^{a b} a^{\dagger} i b^{\dagger} j
\end{aligned}
$$

- Physical wavefunction is built through np-nh excitations of Slater determinant $\mid \Phi$
- Approximate solution to Schrödinger equation by truncating T
- Typically use HF solution as reference state | $\boldsymbol{\text { H }}$
- Schrödinger equation with similarity-transformed Hamiltonian 7

Standard coupled cluster (CC) theory

- State of the art computational tool
- Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
- G. Hagen et al., Phys. Rev. C 82, 034330 (2010)
- Successfully implemented for ${ }^{24} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{132} \mathrm{Sn} \ldots$
- Exponential ansatz $|\Psi\rangle=e^{T}|\Phi\rangle$, where T is the cluster operator
- Cluster Operator $T=T_{1}+T_{2}+T_{3}+\ldots$

$$
\begin{aligned}
& T_{1}=\sum_{i a} t_{i}^{a} a^{\dagger} i \\
& T_{2}=\frac{1}{(2!)^{2}} \sum_{i j a b} t_{i j}^{a b} a^{\dagger} i b^{\dagger} j
\end{aligned}
$$

- Physical wavefunction is built through $\mathrm{n} p-\mathrm{n} h$ excitations of Slater determinant $|\Phi\rangle$
- Approximate solution to Schrödinger equation by truncating T
- Typically use HF solution as reference state $|\Phi\rangle$

Standard coupled cluster (CC) theory

- State of the art computational tool
- Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
- G. Hagen et al., Phys. Rev. C 82, 034330 (2010)
- Successfully implemented for ${ }^{24} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{132} \mathrm{Sn} \ldots$
- Exponential ansatz $|\Psi\rangle=e^{T}|\Phi\rangle$, where T is the cluster operator
- Cluster Operator $T=T_{1}+T_{2}+T_{3}+\ldots$

$$
\begin{aligned}
& T_{1}=\sum_{i a} t_{i}^{a} a^{\dagger} i \\
& T_{2}=\frac{1}{(2!)^{2}} \sum_{i j a b} t_{i j}^{a b} a^{\dagger} i b^{\dagger} j
\end{aligned}
$$

- Physical wavefunction is built through $\mathrm{n} p-\mathrm{n} h$ excitations of Slater determinant $|\Phi\rangle$
- Approximate solution to Schrödinger equation by truncating T
- Typically use HF solution as reference state $|\Phi\rangle$
- Schrödinger equation with similarity-transformed Hamiltonian $\mathcal{H}=e^{-T} H e^{T}$

$$
\begin{aligned}
(H-E) e^{T}|\Phi\rangle & =0 \\
(\mathcal{H}-E)|\Phi\rangle & =0
\end{aligned}
$$

CC formalism

- Baker-Campbell-Hausdorff expansion

$$
\mathcal{H}=H+[H, T]+\frac{1}{2!}[[H, T], T]+\frac{1}{3!}[[[H, T], T], T]+\frac{1}{4!}[[[[H, T], T], T], T]+\ldots
$$

- Truncation to four T operators assuming two-body Hamiltonian
- Final expression of similarity-transformed Hamiltonian

$$
\mathcal{H}=H+(H T)_{\mathrm{C}}+\frac{1}{2!}(H T T)_{\mathrm{C}}+\frac{1}{3!}(H T T T)_{\mathrm{C}}+\frac{1}{4!}(H T T T T)_{\mathrm{C}}=\left(H e^{T}\right)_{\mathrm{C}}
$$

- Energy and amplitude equations

(1) Energy equation multiply on the left by $\langle\Phi$
(2) Amplitude equations multiply on the left by $\left\langle\Phi_{i j \ldots}^{a b}\right.$

- Need as many amplitude equations as terms in cluster operator T
(3) Assume intermediate normalization $\langle\Phi \mid \Psi\rangle=1$

CC formalism

- Baker-Campbell-Hausdorff expansion

$$
\mathcal{H}=H+[H, T]+\frac{1}{2!}[[H, T], T]+\frac{1}{3!}[[[H, T], T], T]+\frac{1}{4!}[[[[H, T], T], T], T]+\ldots
$$

- Truncation to four T operators assuming two-body Hamiltonian
- Final expression of similarity-transformed Hamiltonian

$$
\mathcal{H}=H+(H T)_{\mathrm{C}}+\frac{1}{2!}(H T T)_{\mathrm{C}}+\frac{1}{3!}(H T T T)_{\mathrm{C}}+\frac{1}{4!}(H T T T T)_{\mathrm{C}}=\left(H e^{T}\right)_{\mathrm{C}}
$$

- Energy and amplitude equations

$$
(\mathcal{H}-E)|\Phi\rangle=0
$$

(1) Energy equation multiply on the left by $\langle\Phi|$
(2) Amplitude equations multiply on the left by $\left\langle\Phi_{i j \ldots}^{a b \ldots}\right|$

- Need as many amplitude equations as terms in cluster operator T
(3) Assume intermediate normalization $\langle\Phi \mid \Psi\rangle=1$

Comparison of binding energies of ${ }^{16} \mathrm{O}$
CCD and CCSD are nearly indistinguishable

Bogoliubov coupled cluster theory with doubles (BCCD): diagrammatic

Amplitude terms

Energy term

Bogoliubov coupled cluster with doubles (BCCD): algebraic

- Energy equation

$$
\Delta \Omega_{0}^{B C C D}=\langle\Phi| \bar{\Omega}_{N}|\Phi\rangle_{C}=\langle\Phi| \Omega_{N} \mathcal{T}_{2}|\Phi\rangle
$$

- With fully antisymmetrized matrix elements of grand canonical potential
- $\tilde{\Omega}_{k_{1} \ldots k_{i} k_{i+1} \ldots k_{i+j}}=(-1)^{\sigma(P)} \Omega_{P\left(k_{1} \ldots k_{i} \mid k_{i+1} \ldots k_{i+j}\right)}^{i j}$
- $\sigma(P)$ refers to the signature of the permutation P
- $P(\ldots \mid \ldots)$ denotes separation between quasiparticles and quasiholes

$$
\Delta \Omega_{0}^{B C C D}=\frac{1}{(4!)^{2}} \sum_{\substack{k_{1} k_{2} k_{3} k_{4} \\ k_{1}^{\prime} k_{2}^{\prime} k_{3}^{\prime} k_{4}^{\prime}}}\langle\Phi| \tilde{\Omega}_{k_{1} k_{2} k_{3} k_{4}}^{04} \beta_{k_{1}} \beta_{k_{2}} \beta_{k_{3}} \beta_{k_{4}} \tilde{\mathbf{t}}_{k_{1}^{\prime} k_{2}^{\prime} k_{3}^{\prime} k_{4}^{\prime}} \beta_{k_{1}^{\prime}}^{\dagger} \beta_{k_{2}^{\prime}}^{\dagger} \beta_{k_{3}^{\prime}}^{\dagger} \beta_{k_{4}^{\prime}}^{\dagger}|\Phi\rangle
$$

- Full solution

$$
\Delta \Omega_{0}^{B C C D}=\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} \tilde{\Omega}_{k_{1} k_{2} k_{3} k_{4}}^{04} \tilde{\mathbf{t}}_{k_{1} k_{2} k_{3} k_{4}}
$$

- Find quasiparticle amplitudes from amplitude equation

$$
0=\left\langle\Phi^{\alpha \beta \gamma \delta}\right| \bar{\Omega}_{N}|\Phi\rangle_{\mathrm{C}}=\left\langle\Phi^{\alpha \beta \gamma \delta}\right| \Omega^{40}|\Phi\rangle+\left\langle\Phi^{\alpha \beta \gamma \delta}\right| \Omega \mathcal{T}_{2}|\Phi\rangle_{\mathrm{C}}+\frac{1}{2}\left\langle\Phi^{\alpha \beta \gamma \delta}\right| \Omega \mathcal{T}_{2}^{2}|\Phi\rangle_{\mathrm{C}}
$$

BCCD- amplitude equation

$$
\begin{aligned}
& 0=\tilde{\Omega}_{\alpha \beta \gamma \delta}^{40}+\sum_{k_{1}}\left[\tilde{\Omega}_{\alpha k_{1}}^{11} \tilde{\mathbf{t}}_{k_{1} \beta \gamma \delta}+\tilde{\Omega}_{\beta k_{1}}^{11} \tilde{\mathbf{t}}_{\alpha k_{1} \gamma \delta}+\tilde{\Omega}_{\gamma k_{1}}^{11} \tilde{\mathbf{t}}_{\alpha \beta k_{1} \delta}+\tilde{\Omega}_{\delta k_{1}}^{11} \tilde{\mathbf{t}}_{\alpha \beta \gamma k_{1}}\right] \\
& +\frac{1}{2} \sum_{k_{1} k_{2}}\left[\tilde{\Omega}_{\alpha \beta k_{1} k_{2}}^{22} \tilde{\mathbf{t}}_{k_{1} k_{2} \gamma \delta}+\tilde{\Omega}_{\alpha \gamma k_{1} k_{2}}^{22} \tilde{\mathbf{t}}_{k_{1} k_{2} \delta \beta}+\tilde{\Omega}_{\alpha \delta k_{1} k_{2}}^{22} \tilde{\mathbf{t}}_{k_{1} k_{2} \beta \gamma}\right. \\
& \left.\quad+\tilde{\Omega}_{\beta \gamma k_{1} k_{2}}^{22} \tilde{\mathbf{t}}_{k_{1} k_{2} \alpha \delta}+\tilde{\Omega}_{\beta \delta k_{1} k_{2}}^{22} \tilde{\mathbf{t}}_{k_{1} k_{2} \gamma \alpha}+\tilde{\Omega}_{\gamma \delta k_{1} k_{2}}^{22} \tilde{\mathbf{t}}_{k_{1} k_{2} \alpha \beta}\right] \\
& +\frac{1}{12} \sum_{k_{1} k_{2} k_{3} k_{4}} \tilde{\Omega}_{k_{1} k_{2} k_{3} k_{4}}^{04}\left[2 \left(\tilde{\mathbf{t}}_{\alpha k_{1} k_{2} k_{3}} \tilde{\mathbf{t}}_{k_{4} \beta \gamma \delta}+\tilde{\mathbf{t}}_{\beta k_{1} k_{2} k_{3}} \tilde{\mathbf{t}}_{\alpha k_{4} \gamma \delta}\right.\right. \\
& \\
& \left.\quad+\tilde{\mathbf{t}}_{\gamma k_{1} k_{2} k_{3}} \tilde{\mathbf{t}}_{\alpha \beta k_{4} \delta}+\tilde{\mathbf{t}}_{\delta k_{1} k_{2} k_{3}} \tilde{\mathbf{t}}_{\alpha \beta \gamma k_{4}}\right) \\
& \\
& \left.\quad+3\left(\tilde{\mathbf{t}}_{k_{1} k_{2} \alpha \beta} \tilde{\mathbf{t}}_{k_{3} k_{4} \gamma \delta}+\tilde{\mathbf{t}}_{k_{1} k_{2} \alpha \gamma} \tilde{\mathbf{t}}_{k_{3} k_{4} \delta \beta}+\tilde{\mathbf{t}}_{k_{1} k_{2} \alpha \delta} \tilde{\mathbf{t}}_{k_{3} k_{4} \beta \gamma}\right)\right]
\end{aligned}
$$

- Also need constraint equation for average particle number
- Solve system of equations iteratively
- Update Lagrange parameter each iteration

