Bogoliubov coupled cluster theory Or: Many-body methods for open-shell nuclei

A. Signoracci^{1,2}, T. Duguet^{3,4}, G. Hagen^{1,2}, G.R. Jansen^{1,2}

 ¹Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
 ²Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
 ³Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
 ⁴National Superconducting Cylcotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

TRIUMF workshop, 17-20 February 2015, Vancouver, BC

<ロト (四) (三) (三) (三)

Motivation: computing open-shell nuclei

- Establish techniques to provide reliable predictions for experimental measurements
 - Include assessment of uncertainty from many-body method
 - Expansion techniques are ideal, if contributions are smaller at higher orders
 - Exclusion of nuclear reaction dynamics and continuum at the moment
 - Multiple methods are necessary
 - Access to other observable properties beyond energy of strong interest
- Ab initio methods have been developed
 - CC, IM-SRG, SCGF, CI/SM
- Three different philosophies
 - Multireference (MR-CC, MR-IM-SRG)
 - Effective interaction (from CC, NCSM, IM-SRG)
 - Symmetry breaking (BCC, Gorkov Green's function methods)
- Require accurate treatment of nuclear forces to reproduce experiment
- Ab initio calculations of nuclei provide feedback on accuracy of potentials

Ab initio techniques for (truly) open-shell nuclei

- Expansion techniques break down for calculations of (truly) open-shell nuclei
 - Extensions beyond doubly-closed subshell nuclei exist via multi-reference methods (e.g., particle-attached equation-of-motion CC)
 - Computationally demanding as more particles are added
 - Not suited to calculate truly open-shell nuclei due to phase transition
- Reference state explicitly breaking symmetry can account for superfluid nature
- Build CC techniques around Bogoliubov vacuum
 - More relevant away from light isotopes
 - K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984)
 - W.A. Lahoz and R.F. Bishop, Z. Phys. B 73, 363 (1988
 - L.Z. Stolarczyk and H.J. Monkhorst, Mol. Phys. 108, 3067 (2010)
- Maintain single reference nature (formal and computational simplicity)
- Difficulties
 - Quasiparticle basis- rewrite Hamiltonian normal-ordered wrt HFB vacuum
 - Diagrammatic techniques- rules (e.g. from Shavitt and Bartlett) need modification
 - Additional constraint equation- average particle number
 - Computational aspect- less expedient scaling

$n_p^i n_h^j$ in CC $\rightarrow (n_p + n_h)^{i+j}$ in BCC

Ab initio techniques for (truly) open-shell nuclei

- Expansion techniques break down for calculations of (truly) open-shell nuclei
 - Extensions beyond doubly-closed subshell nuclei exist via multi-reference methods (e.g., particle-attached equation-of-motion CC)
 - Computationally demanding as more particles are added
 - Not suited to calculate truly open-shell nuclei due to phase transition
- Reference state explicitly breaking symmetry can account for superfluid nature
- Build CC techniques around Bogoliubov vacuum
 - More relevant away from light isotopes
 - K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984)
 - W.A. Lahoz and R.F. Bishop, Z. Phys. B 73, 363 (1988)
 - L.Z. Stolarczyk and H.J. Monkhorst, Mol. Phys. 108, 3067 (2010)
- Maintain single reference nature (formal and computational simplicity)
- Difficulties
 - Quasiparticle basis- rewrite Hamiltonian normal-ordered wrt HFB vacuum
 - Diagrammatic techniques- rules (e.g. from Shavitt and Bartlett) need modification
 - Additional constraint equation- average particle number
 - Computational aspect- less expedient scaling

$n_p^i n_h^j$ in CC $ightarrow (n_p + n_h)^{i+j}$ in BCC

1 E F 1 E F

Ab initio techniques for (truly) open-shell nuclei

- Expansion techniques break down for calculations of (truly) open-shell nuclei
 - Extensions beyond doubly-closed subshell nuclei exist via multi-reference methods (e.g., particle-attached equation-of-motion CC)
 - Computationally demanding as more particles are added
 - Not suited to calculate truly open-shell nuclei due to phase transition
- Reference state explicitly breaking symmetry can account for superfluid nature
- Build CC techniques around Bogoliubov vacuum
 - More relevant away from light isotopes
 - K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30, 2049 (1984)
 - W.A. Lahoz and R.F. Bishop, Z. Phys. B 73, 363 (1988)
 - L.Z. Stolarczyk and H.J. Monkhorst, Mol. Phys. 108, 3067 (2010)
- Maintain single reference nature (formal and computational simplicity)

Difficulties

- Quasiparticle basis- rewrite Hamiltonian normal-ordered wrt HFB vacuum
- Diagrammatic techniques- rules (e.g. from Shavitt and Bartlett) need modification
- Additional constraint equation- average particle number
- Computational aspect- less expedient scaling

$$n_p^i n_h^j$$
 in CC $\rightarrow (n_p + n_h)^{i+j}$ in BCC

ヨトィヨト

Bogoliubov algebra

ŀ

Bogoliubov transformation

$$c_l^{\dagger} = \sum_k U_{lk}^* \beta_k^{\dagger} + V_{lk} \beta_k \qquad c_l = \sum_k U_{lk} \beta_k + V_{lk}^* \beta_k^{\dagger}$$

- Bogoliubov vacuum $|\Phi\rangle \equiv C \prod_i \beta_j |0\rangle$
- Natural extension from particle-hole language
- Simplifies some aspects of standard CC theory
- Rewrite Hamiltonian, i.e. normal order with respect to $|\Phi
 angle$
 - Derived including three-body interactions (to include implicit two-body component)

Each matrix element can be written as a function of NN, NNN, U, V

Bogoliubov coupled cluster theory

- Complete details can be found at A. Signoracci et al., arXiv:1412:2696
- Hamiltonian replaced by grand canonical potential $\Omega = H \lambda A$
- Solution for nucleus with A_0 particles given by

$$\Omega |\Psi\rangle = \Omega_0 |\Psi\rangle$$

• Constraint equation
$$A_0 = \frac{\langle \Psi | A | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

- Exponential ansatz $|\Psi
 angle=e^{\mathcal{T}}|\Phi
 angle$
- Quasiparticle cluster operator $\mathcal{T} = \mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3 + \dots$

$$\begin{split} \mathcal{T}_{1} &= \frac{1}{2!} \sum_{k_{1}k_{2}} \tilde{\mathbf{t}}_{k_{1}k_{2}} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \\ \mathcal{T}_{2} &= \frac{1}{4!} \sum_{k_{1}k_{2}k_{3}k_{4}} \tilde{\mathbf{t}}_{k_{1}k_{2}k_{3}k_{4}} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}^{\dagger} \end{split}$$

• Similarity transformed grand canonical potential $ar{\Omega} = e^{-\mathcal{T}} \Omega e^{\mathcal{T}}$

Extension of standard coupled cluster theory

- Motivated by procedure in standard coupled cluster theory
 - Produce eigenvalue equation $\bar{\Omega} |\Phi\rangle = \Omega_0 |\Phi\rangle$
 - Utilize Baker-Campbell-Hausdorff expansion
 - Truncate to four ${\mathcal T}$ operators (six with explicit three-body contribution)
 - · Limit to connected terms only
 - Only quasiparticle creation operators in $\mathcal{T}\to \Omega$ to the left

$$\bar{\Omega} = \Omega + \left(\Omega \mathcal{T}\right)_{\mathsf{C}} + \frac{1}{2!} \left(\Omega \mathcal{T} \mathcal{T}\right)_{\mathsf{C}} + \frac{1}{3!} \left(\Omega \mathcal{T} \mathcal{T} \mathcal{T}\right)_{\mathsf{C}} + \frac{1}{4!} \left(\Omega \mathcal{T} \mathcal{T} \mathcal{T} \mathcal{T}\right)_{\mathsf{C}} = (\Omega e^{\mathcal{T}})_{\mathsf{C}}$$

- Subtract reference energy for convenience $\Omega_{\textit{N}}=\Omega-\langle\Phi|\Omega|\Phi\rangle$
- Produce energy and amplitude equations

$$\langle \Phi | \bar{\Omega}_N | \Phi
angle_{\mathsf{C}} = \Delta \Omega_0$$

 $\langle \Phi^{lpha eta \ldots} | \bar{\Omega}_N | \Phi
angle_{\mathsf{C}} = 0$

• Solve under constraint of average particle number

$$A_{0} = \frac{\langle \Phi | e^{\mathcal{T}^{\dagger}} A e^{\mathcal{T}} | \Phi \rangle}{\langle \Phi | e^{\mathcal{T}^{\dagger}} e^{\mathcal{T}} | \Phi \rangle} = \langle \Phi | e^{\mathcal{T}^{\dagger}} A e^{\mathcal{T}} | \Phi \rangle_{\mathsf{C}} = \langle \Phi | (1 + \Lambda) e^{-\mathcal{T}} A e^{\mathcal{T}} | \Phi \rangle_{\mathsf{C}}$$

CCEI calculations in the sd shell

• Production of effective interactions

- Similar to prior work, now focusing on full interactions in sd shell
- Requires solution of ^{16,17,18}O,^{17,18}F,¹⁸Ne with CC methods
- Projection onto valence space components for shell model calculations
- More complicated than prior work, but straightforward extension

Additional truncation

- Current results for $N_{\text{max}} = 10, E_{3\text{max}} = 10$
- Calculations underway to match prior bases for publication
- Expect minimal effect in low-lying spectra
- Nevertheless, all results are preliminary

• Ongoing work on operators

- Effective operators in the valence space
- Implemented one-body component of charge radius operator
- Induced two-body operator necessary, under investigation
- Will not show results at the moment
- Soon can treat B(E2), B(GT), double beta decay, etc. consistently

3 ×

CCEI calculations in the sd shell

• Production of effective interactions

- Similar to prior work, now focusing on full interactions in sd shell
- Requires solution of ^{16,17,18}O,^{17,18}F,¹⁸Ne with CC methods
- Projection onto valence space components for shell model calculations
- More complicated than prior work, but straightforward extension

Additional truncation

- Current results for $N_{\rm max}=10, E_{\rm 3max}=10$
- Calculations underway to match prior bases for publication
- Expect minimal effect in low-lying spectra
- Nevertheless, all results are preliminary

Ongoing work on operators

- Effective operators in the valence space
- Implemented one-body component of charge radius operator
- Induced two-body operator necessary, under investigation
- Will not show results at the moment
- Soon can treat B(E2), B(GT), double beta decay, etc. consistently

CCEI calculations in the sd shell

• Production of effective interactions

- Similar to prior work, now focusing on full interactions in sd shell
- Requires solution of ^{16,17,18}O,^{17,18}F,¹⁸Ne with CC methods
- Projection onto valence space components for shell model calculations
- More complicated than prior work, but straightforward extension

Additional truncation

- Current results for $N_{\rm max}=10, E_{\rm 3max}=10$
- · Calculations underway to match prior bases for publication
- Expect minimal effect in low-lying spectra
- Nevertheless, all results are preliminary

Ongoing work on operators

- Effective operators in the valence space
- Implemented one-body component of charge radius operator
- Induced two-body operator necessary, under investigation
- Will not show results at the moment
- Soon can treat B(E2), B(GT), double beta decay, etc. consistently

Binding energies in sd shell

A. Signoracci Bogoliubov coupled cluster theoryOr: Many-body methods for open-shell n

A. Signoracci Bogoliubov coupled cluster theoryOr: Many-body methods for open-shell m

Current status of ab initio BCC theory

• Formalism

- Derivation of BCCSD complete, evaluated equivalently in multiple ways
- Includes two- and three-body microscopic forces
- Can recover standard CCSD in Slater determinant limit
 - Produce more general extended coupled cluster method in straightforward limit
- BCCSDT derivation straightforward from application of diagrammatic rules

Implementation

- Utilize NN interactions from chiral potential (+RG)
- Bogoliubov vacuum from solution of HFB equations
 - *m*-scheme version of HFB code
 - Initialized with diagonal spherical BCS solutions
 - Utilizes symmetry properties (subblock matrices in most reduced form)
- BCCSD derived and coded in *m*-scheme with intermediates
 - BCCSD energy and amplitude equations contain 27 diagrams
 - Intermediates reduce computational time and formal complexity
 - Slight issues remaining in comparison to benchmark CC calculations
- Evaluation of one- and two- body operators
 - One-body operator A essential to solve system of equations
 - Two-body operator A² provides measure of symmetry breaking
 - Extension to other observables straightforward
 - Limited to ground state until EOM-BCC is implemented

Current status of ab initio BCC theory

• Formalism

- Derivation of BCCSD complete, evaluated equivalently in multiple ways
- Includes two- and three-body microscopic forces
- Can recover standard CCSD in Slater determinant limit
 - Produce more general extended coupled cluster method in straightforward limit
- BCCSDT derivation straightforward from application of diagrammatic rules

Implementation

- Utilize NN interactions from chiral potential (+RG)
- Bogoliubov vacuum from solution of HFB equations
 - *m*-scheme version of HFB code
 - Initialized with diagonal spherical BCS solutions
 - Utilizes symmetry properties (subblock matrices in most reduced form)
- BCCSD derived and coded in *m*-scheme with intermediates
 - BCCSD energy and amplitude equations contain 27 diagrams
 - Intermediates reduce computational time and formal complexity
 - Slight issues remaining in comparison to benchmark CC calculations
- Evaluation of one- and two- body operators
 - One-body operator A essential to solve system of equations
 - Two-body operator A² provides measure of symmetry breaking
 - Extension to other observables straightforward
 - Limited to ground state until EOM-BCC is implemented

• Illustration using BCCD

- \bullet Truncation to $\mathcal{T}=\mathcal{T}_2$
- Should include most important effects at lowest order
- Singles contribution corresponds to Thouless theorem; HFB solution used
- Does not provide convergence- triples required at least perturbatively

• Comparison to CC results in closed-shell nuclei

- HFB solution formally collapses to HF solution
- BCCSD equations in Slater determinant limit contain correlations beyond CCSD
- In practice, CC results for closed-shell nuclei are reproduced exactly

• Comparison to CC results beyond closed-shell nuclei

- HFB reference state is constrained to correct particle number on average
- BCC equations are iterated with Lagrange constraint on particle number (Z and N)
- Computation of particle number via $\Lambda = \mathcal{T}^{\dagger}$ valid at 1st order
- Extensions of CC, e.g. EOM-CC, provide comparison to BCC
- Allocated time on supercomputing machines for calculations (e.g. TITAN)

Parameters of the calculation

- Bare NNLO_{opt} from A.Ekström et al., PRL 110, 192502 (2013)
- Spherical harmonic oscillator single particle basis defined by $\hbar\omega$
- Ground states of 16,18,20 O, 18 Ne, 20 Mg calculated in $N_{max} = 6$ model space
- Current computational limit reached at N=8 oscillator shell (re-coding necessary)
- Intrinsic Hamiltonian treated approximately (HFB solution breaks symmetry)

(4 回下) イヨト イヨト

- Illustration using BCCD
 - Truncation to $\mathcal{T} = \mathcal{T}_2$
 - Should include most important effects at lowest order
 - Singles contribution corresponds to Thouless theorem; HFB solution used
 - Does not provide convergence- triples required at least perturbatively

• Comparison to CC results in closed-shell nuclei

- HFB solution formally collapses to HF solution
- BCCSD equations in Slater determinant limit contain correlations beyond CCSD
- In practice, CC results for closed-shell nuclei are reproduced exactly
- Comparison to CC results beyond closed-shell nuclei
 - HFB reference state is constrained to correct particle number on average
 - BCC equations are iterated with Lagrange constraint on particle number (Z and N)
 - Computation of particle number via $\Lambda = \mathcal{T}^{\dagger}$ valid at 1st order
 - Extensions of CC, e.g. EOM-CC, provide comparison to BCC
- Allocated time on supercomputing machines for calculations (e.g. TITAN)

Parameters of the calculation

- Bare NNLO_{opt} from A.Ekström et al., PRL 110, 192502 (2013)
- Spherical harmonic oscillator single particle basis defined by $\hbar\omega$
- Ground states of 16,18,20 O, 18 Ne, 20 Mg calculated in $N_{max} = 6$ model space
- Current computational limit reached at N=8 oscillator shell (re-coding necessary)
- Intrinsic Hamiltonian treated approximately (HFB solution breaks symmetry)

(4 回下) イヨト イヨト

- Illustration using BCCD
 - Truncation to $\mathcal{T} = \mathcal{T}_2$
 - Should include most important effects at lowest order
 - Singles contribution corresponds to Thouless theorem; HFB solution used
 - Does not provide convergence- triples required at least perturbatively

• Comparison to CC results in closed-shell nuclei

- HFB solution formally collapses to HF solution
- BCCSD equations in Slater determinant limit contain correlations beyond CCSD
- In practice, CC results for closed-shell nuclei are reproduced exactly
- Comparison to CC results beyond closed-shell nuclei
 - HFB reference state is constrained to correct particle number on average
 - BCC equations are iterated with Lagrange constraint on particle number (Z and N)
 - Computation of particle number via $\Lambda=\mathcal{T}^{\dagger}$ valid at 1st order
 - Extensions of CC, e.g. EOM-CC, provide comparison to BCC

• Allocated time on supercomputing machines for calculations (e.g. TITAN)

Parameters of the calculation

- Bare NNLO_{opt} from A.Ekström et al., PRL 110, 192502 (2013)
- Spherical harmonic oscillator single particle basis defined by $\hbar\omega$
- Ground states of 16,18,20 O, 18 Ne, 20 Mg calculated in $N_{max} = 6$ model space
- Current computational limit reached at N=8 oscillator shell (re-coding necessary)
- Intrinsic Hamiltonian treated approximately (HFB solution breaks symmetry)

・ 何 ト ・ ヨ ト ・ ヨ ト

- Illustration using BCCD
 - Truncation to $\mathcal{T} = \mathcal{T}_2$
 - Should include most important effects at lowest order
 - Singles contribution corresponds to Thouless theorem; HFB solution used
 - Does not provide convergence- triples required at least perturbatively
- Comparison to CC results in closed-shell nuclei
 - HFB solution formally collapses to HF solution
 - BCCSD equations in Slater determinant limit contain correlations beyond CCSD
 - In practice, CC results for closed-shell nuclei are reproduced exactly
- Comparison to CC results beyond closed-shell nuclei
 - HFB reference state is constrained to correct particle number on average
 - BCC equations are iterated with Lagrange constraint on particle number (Z and N)
 - $\bullet\,$ Computation of particle number via $\Lambda=\mathcal{T}^{\dagger}\,$ valid at 1st order
 - Extensions of CC, e.g. EOM-CC, provide comparison to BCC
- Allocated time on supercomputing machines for calculations (e.g. TITAN)
- Parameters of the calculation
 - Bare NNLO_{opt} from A.Ekström et al., PRL **110**, 192502 (2013)
 - Spherical harmonic oscillator single particle basis defined by $\hbar \hat{\omega}$
 - Ground states of 16,18,20 O, 18 Ne, 20 Mg calculated in $N_{max} = 6$ model space
 - Current computational limit reached at N=8 oscillator shell (re-coding necessary)
 - Intrinsic Hamiltonian treated approximately (HFB solution breaks symmetry)

¹⁶O: Energies and extrapolations

CCSD energy as a function of $\hbar\omega$

¹⁶O: Energies and extrapolations

A. Signoracci

Bogoliubov coupled cluster theoryOr: Many-body methods for open-shell ne

Open shell nuclei: Energies and extrapolations

$$E(L) = E_{\infty} + A_{\infty} e^{-2k_{\infty}L}$$
 $L = L_2 = \sqrt{2(N+3/2+2)}\sqrt{\hbar/(M\omega)}$

Open shell nuclei: Energies and extrapolations

$$E(L) = E_{\infty} + A_{\infty} e^{-2k_{\infty}L}$$
 $L = L_2 = \sqrt{2(N+3/2+2)}\sqrt{\hbar/(M\omega)}$

Compiled results of sd-shell nuclei

Nucleus	$E_{N=6}^{BCC}$	$E_{N=6}^{CC}$	E_{∞}	$E_{N=12}^{CC}$	E ^{exp}
¹⁶ O	-119.110	-119.110	-124.821	-123.453	-127.619
¹⁸ O	-124.440	-126.476	-130.738	-132.990	-139.808
²⁰ O	-131.428	n/a	-139.144	n/a	-151.371
¹⁸ Ne	-115.413	-117.927	-122.089	-124.850	-132.143
²⁰ Mg	-112.237	n/a	-119.996	n/a	-134.480

- $\bullet\,$ BCCD extrapolated results given by \textit{E}_{∞}
- CCSD results
 - For ¹⁶O, standard CCSD calculation
 - For $^{18}\text{O},~^{18}\text{Ne},$ two-particles-attached equation-of-motion CCSD with $\hbar\omega=26~\text{MeV}$
 - Future comparison of computational aspects of BCC and EOM-CC necessary

Assessing symmetry breaking

- Evaluation of particle number via one-body density matrix
 - Constrained in BCC system of equations to correct number on average
 - Interested in evaluating conservation of symmetry upon solution
- HFB reference state
 - Separately constrained to produce right particle number on average
 - Variance $\sigma_A = \sqrt{\langle A^2 \rangle \langle A \rangle^2}$ relates amount of symmetry breaking
 - For closed shell nuclei, HFB equations reduce exactly to HF result ($\sigma_A = 0$)
- BCC results
 - Expect symmetry to be restored as more correlations are added
 - In exact result (Ap Ah excitations), physical symmetries restored
 - For BCCD in small model spaces, this is far from maintained
 - Amount of symmetry breaking on par with initial HFB state
 - Local fluctuations present (A = 20 mirror nuclei differ significantly)

Table: σ_A at N=6

Nucleus	HFB	BCCD
¹⁶ O	0.000	0.000
¹⁸ O	1.666	1.677
²⁰ O	1.699	1.843
¹⁸ Ne	1.663	1.662
²⁰ Mg	1.691	1.596

A. Signoracci Bogoliubov coupled cluster theoryOr: Many-body methods for open-shell m

Short-term outlook

• Converged results of open-shell nuclei forthcoming

- Compare CI with CC effective interactions to BCC
- Benchmark results against in-medium SRG/Gorkov-Green's function results
- Implement one- and induced two-body operators to evaluate charge radii
- Compute other observables to provide predictions for upcoming experiments
- Attempt other model spaces besides sd shell

Utilize deformed basis in BCC

- Advantage of *m*-scheme implementation compared to *J*-coupled scheme
- Currently, spherical single particle basis and spherical BCS solution employed
- Permits treatment of doubly-open-shell nuclei
- Upcoming evaluation of potential energy surfaces (²⁴Mg) ab initio

• Go beyond N=8 oscillator shell in BCC calculations

- Distribution of \mathcal{T}_2 amplitudes required
- Further optimization of code desirable
- Alternatively, implement BCC equations in *J*-scheme
 - Significant improvement due to reduction of dimensions
 - Only requires projection of U(1) symmetry to restore physical quantum numbers

3 ×

Short-term outlook

• Converged results of open-shell nuclei forthcoming

- Compare CI with CC effective interactions to BCC
- Benchmark results against in-medium SRG/Gorkov-Green's function results
- Implement one- and induced two-body operators to evaluate charge radii
- Compute other observables to provide predictions for upcoming experiments
- Attempt other model spaces besides sd shell

• Utilize deformed basis in BCC

- Advantage of *m*-scheme implementation compared to *J*-coupled scheme
- Currently, spherical single particle basis and spherical BCS solution employed
- · Permits treatment of doubly-open-shell nuclei
- Upcoming evaluation of potential energy surfaces (²⁴Mg) ab initio

• Go beyond N=8 oscillator shell in BCC calculations

- Distribution of \mathcal{T}_2 amplitudes required
- Further optimization of code desirable
- Alternatively, implement BCC equations in J-scheme
 - Significant improvement due to reduction of dimensions
 - Only requires projection of U(1) symmetry to restore physical quantum numbers

3 ×

Short-term outlook

• Converged results of open-shell nuclei forthcoming

- Compare CI with CC effective interactions to BCC
- Benchmark results against in-medium SRG/Gorkov-Green's function results
- Implement one- and induced two-body operators to evaluate charge radii
- Compute other observables to provide predictions for upcoming experiments
- Attempt other model spaces besides sd shell

• Utilize deformed basis in BCC

- Advantage of *m*-scheme implementation compared to *J*-coupled scheme
- Currently, spherical single particle basis and spherical BCS solution employed
- · Permits treatment of doubly-open-shell nuclei
- Upcoming evaluation of potential energy surfaces (²⁴Mg) ab initio
- Go beyond N=8 oscillator shell in BCC calculations
 - Distribution of \mathcal{T}_2 amplitudes required
 - Further optimization of code desirable
 - Alternatively, implement BCC equations in J-scheme
 - Significant improvement due to reduction of dimensions
 - Only requires projection of U(1) symmetry to restore physical quantum numbers

Outlook for BCC theory (including longer-term goals)

• Extend to equation-of-motion BCC

- Equation-of-motion BCC enables the computation of odd nuclei and excited states
- One-particle attached (or removed) is sufficient due to explicit treatment of pairing
- $\bullet\,$ With one-body density matrices, allows for computation of observables, e.g. B(E2)
- Include three-body forces at least at normal-ordered two-body level
 - Inclusion of three-body forces relevant for accurate results and trends
 - Full treatment already derived in general indices
 - Normal-ordered two-body contribution nearly derived in *m*-scheme implementation
 - Verify that explicit three-body component can be neglected

• Projection of good quantum numbers

- Relevant once symmetry is spontaneously broken
- Physical state maintains symmetry
- Restore symmetry in approximate treatment through projection
- Future implementation to restore U(1) and SO(3) symmetry

• Long-term extensions and ideas

- Advances in standard CC theory typically are relevant to BCC theory as well
- Standard coupled cluster theory is an active area of research
- Include continuum when necessary
- Incorporate nuclear dynamics, e.g. Lorentz Integral Transformation
- Provide insight on nuclear interactions
- Charge-exchange/beta-decay with isospin-invariant HFB solution

- E - E

Э

Backup slides

イロト イポト イヨト イヨト

Comparison of spectra in ²⁴F

Same interaction used ($N_{max} = 10, E_{3max=10}$)

²⁴F Level Scheme

Effect of model space? Induced three-body from Okubo-Lee-Suzuki?

- State of the art computational tool
 - Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
 - G. Hagen et al., Phys. Rev. C 82, 034330 (2010)
 Successfully implemented for ²⁴O, ⁴⁰Ca, ¹³²Sn ...
- Exponential ansatz $|\Psi\rangle = e^T |\Phi\rangle$, where T is the cluster operator
- Cluster Operator $T = T_1 + T_2 + T_3 + \dots$

$$T_1 = \sum_{ia} t_i^a a^{\dagger} i$$
$$T_2 = \frac{1}{(2!)^2} \sum_{ijab} t_{ij}^{ab} a^{\dagger} i b^{\dagger} j$$

- Physical wavefunction is built through $n_P n_h$ excitations of Slater determinant $|\Phi\rangle$

- Schrödinger equation with similarity-transformed Hamiltonian $\mathcal{H} = e^{-T} H e^{T}$

$$(H - E)e^{T}|\Phi\rangle = 0$$

 $(\mathcal{H} - E)|\Phi\rangle = 0$

- State of the art computational tool
 - Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
 - G. Hagen et al., Phys. Rev. C 82, 034330 (2010)
 Successfully implemented for ²⁴O, ⁴⁰Ca, ¹³²Sn ...
- Exponential ansatz $|\Psi\rangle = e^T |\Phi\rangle$, where T is the cluster operator
- Cluster Operator $T = T_1 + T_2 + T_3 + \dots$

$$egin{aligned} T_1 &= \sum_{ia} t_i^a a^\dagger i \ T_2 &= rac{1}{(2!)^2} \sum_{ijab} t_{ij}^{ab} a^\dagger i b^\dagger j \end{aligned}$$

- Physical wavefunction is built through $n_P n_h$ excitations of Slater determinant $|\Phi\rangle$
- Approximate solution to Schrödinger equation by truncating T
- Schrödinger equation with similarity-transformed Hamiltonian $\mathcal{H} = e^{-T} H e^{T}$

$$(H - E)e^{T}|\Phi\rangle = 0$$

 $(\mathcal{H} - E)|\Phi\rangle = 0$

- State of the art computational tool
 - Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
 - G. Hagen et al., Phys. Rev. C 82, 034330 (2010)
 Successfully implemented for ²⁴O, ⁴⁰Ca, ¹³²Sn ...
- Exponential ansatz $|\Psi\rangle = e^T |\Phi\rangle$, where T is the cluster operator
- Cluster Operator $T = T_1 + T_2 + T_3 + \dots$

$$T_{1} = \sum_{ia} t_{i}^{a} a^{\dagger} i$$
$$T_{2} = \frac{1}{(2!)^{2}} \sum_{ijab} t_{ij}^{ab} a^{\dagger} i b^{\dagger} j$$

- Physical wavefunction is built through $n_p n_h$ excitations of Slater determinant $|\Phi\rangle$
- Approximate solution to Schrödinger equation by truncating T
- Typically use HF solution as reference state $|\Phi\rangle$
- Schrödinger equation with similarity-transformed Hamiltonian $\mathcal{H} = e^{-T} H e^{T}$

$$(H - E)e^{T}|\Phi\rangle = 0$$

 $(\mathcal{H} - E)|\Phi\rangle = 0$

- State of the art computational tool
 - Many-Body Methods in Chemistry and Physics, I. Shavitt and R.J. Bartlett
 - G. Hagen et al., Phys. Rev. C 82, 034330 (2010)
 Successfully implemented for ²⁴O, ⁴⁰Ca, ¹³²Sn ...
- Exponential ansatz $|\Psi\rangle = e^T |\Phi\rangle$, where T is the cluster operator
- Cluster Operator $T = T_1 + T_2 + T_3 + \dots$

$$egin{array}{ll} T_1 &= \sum_{ia} t_i^a a^\dagger i \ T_2 &= rac{1}{(2!)^2} \sum_{ijab} t_{ij}^{ab} a^\dagger i b^\dagger j \end{array}$$

- Physical wavefunction is built through $n_p n_h$ excitations of Slater determinant $|\Phi\rangle$
- Approximate solution to Schrödinger equation by truncating T
- Typically use HF solution as reference state $|\Phi\rangle$
- Schrödinger equation with similarity-transformed Hamiltonian $\mathcal{H} = e^{-T} H e^{T}$

$$(H - E)e^{T}|\Phi\rangle = 0$$

 $(\mathcal{H} - E)|\Phi\rangle = 0$

CC formalism

• Baker-Campbell-Hausdorff expansion

$$\mathcal{H} = H + [H, T] + \frac{1}{2!}[[H, T], T] + \frac{1}{3!}[[[H, T], T], T] + \frac{1}{4!}[[[[H, T], T], T], T], T] + \dots$$

- Truncation to four T operators assuming two-body Hamiltonian
- Final expression of similarity-transformed Hamiltonian

$$\mathcal{H} = H + \left(HT\right)_{\mathsf{C}} + \frac{1}{2!}\left(HTT\right)_{\mathsf{C}} + \frac{1}{3!}\left(HTTT\right)_{\mathsf{C}} + \frac{1}{4!}\left(HTTTT\right)_{\mathsf{C}} = (He^{\mathsf{T}})_{\mathsf{C}}$$

Energy and amplitude equations

$$(\mathcal{H}-E)|\Phi
angle=0$$

D Energy equation multiply on the left by $\langle \Phi |$

2 Amplitude equations multiply on the left by $\langle \Phi_{ij\ldots}^{ab\ldots} \rangle$

- Need as many amplitude equations as terms in cluster operator T
- 3 Assume intermediate normalization $\langle \Phi | \Psi
 angle = 1$

CC formalism

• Baker-Campbell-Hausdorff expansion

$$\mathcal{H} = H + [H, T] + \frac{1}{2!}[[H, T], T] + \frac{1}{3!}[[[H, T], T], T] + \frac{1}{4!}[[[[H, T], T], T], T], T] + \dots$$

- Truncation to four T operators assuming two-body Hamiltonian
- Final expression of similarity-transformed Hamiltonian

$$\mathcal{H} = H + \left(HT\right)_{\mathsf{C}} + \frac{1}{2!}\left(HTT\right)_{\mathsf{C}} + \frac{1}{3!}\left(HTTT\right)_{\mathsf{C}} + \frac{1}{4!}\left(HTTTT\right)_{\mathsf{C}} = (He^{\mathsf{T}})_{\mathsf{C}}$$

• Energy and amplitude equations

$$(\mathcal{H}-E)|\Phi
angle=0$$

- \blacksquare Energy equation multiply on the left by $\langle\Phi|$
- 2 Amplitude equations multiply on the left by $\langle \Phi_{ij...}^{ab...} \rangle$
 - $\bullet\,$ Need as many amplitude equations as terms in cluster operator ${\cal T}$
- $\textbf{③} Assume intermediate normalization \langle \Phi | \Psi \rangle = 1$

Comparison of binding energies of ¹⁶O

CCD and CCSD are nearly indistinguishable

Bogoliubov coupled cluster theory with doubles (BCCD): diagrammatic

Energy term

Bogoliubov coupled cluster with doubles (BCCD): algebraic

• Energy equation

$$\Delta\Omega_0^{BCCD} = \langle \Phi | \bar{\Omega}_N | \Phi \rangle_{\mathsf{C}} = \langle \Phi | \Omega_N \mathcal{T}_2 | \Phi \rangle$$

• With fully antisymmetrized matrix elements of grand canonical potential

•
$$\tilde{\Omega}_{k_1...k_ik_{i+1}...k_{i+j}}^{ij} = (-1)^{\sigma(P)} \Omega_{P(k_1...k_i|k_{i+1}...k_{i+j})}^{ij}$$

- $\sigma(P)$ refers to the signature of the permutation P
- $P(\ldots|\ldots)$ denotes separation between quasiparticles and quasiholes

$$\Delta\Omega_{0}^{BCCD} = \frac{1}{(4!)^{2}} \sum_{\substack{k_{1}k_{2}k_{3}k_{4} \\ k_{1}'k_{2}'k_{3}'k_{4}'}} \langle \Phi | \tilde{\Omega}_{k_{1}k_{2}k_{3}k_{4}}^{04} \beta_{k_{1}}\beta_{k_{2}}\beta_{k_{3}}\beta_{k_{4}} \mathbf{\tilde{t}}_{k_{1}'k_{2}'k_{3}'k_{4}'}^{\dagger} \beta_{k_{1}'}^{\dagger} \beta_{k_{2}'}^{\dagger} \beta_{k_{3}'}^{\dagger} \beta_{k_{4}'}^{\dagger} | \Phi \rangle$$

• Full solution

$$\Delta\Omega_0^{BCCD} = \frac{1}{4!} \sum_{k_1 k_2 k_3 k_4} \tilde{\Omega}_{k_1 k_2 k_3 k_4}^{04} \mathbf{\tilde{t}}_{k_1 k_2 k_3 k_4}$$

• Find quasiparticle amplitudes from amplitude equation

$$0 = \langle \Phi^{\alpha\beta\gamma\delta} | \bar{\Omega}_{N} | \Phi \rangle_{\mathsf{C}} = \langle \Phi^{\alpha\beta\gamma\delta} | \Omega^{40} | \Phi \rangle + \langle \Phi^{\alpha\beta\gamma\delta} | \Omega \mathcal{T}_{2} | \Phi \rangle_{\mathsf{C}} + \frac{1}{2} \langle \Phi^{\alpha\beta\gamma\delta} | \Omega \mathcal{T}_{2}^{2} | \Phi \rangle_{\mathsf{C}}$$

BCCD- amplitude equation

$$\begin{split} \mathbf{0} &= \tilde{\Omega}^{40}_{\alpha\beta\gamma\delta} + \sum_{k_1} \left[\tilde{\Omega}^{11}_{\alpha k_1} \tilde{\mathbf{t}}_{k_1\beta\gamma\delta} + \tilde{\Omega}^{11}_{\beta k_1} \tilde{\mathbf{t}}_{\alpha k_1\gamma\delta} + \tilde{\Omega}^{11}_{\gamma k_1} \tilde{\mathbf{t}}_{\alpha\beta k_1\delta} + \tilde{\Omega}^{11}_{\delta k_1} \tilde{\mathbf{t}}_{\alpha\beta\gamma k_1} \right] \\ &+ \frac{1}{2} \sum_{k_1 k_2} \left[\tilde{\Omega}^{22}_{\alpha\beta k_1 k_2} \tilde{\mathbf{t}}_{k_1 k_2\gamma\delta} + \tilde{\Omega}^{22}_{\alpha\gamma k_1 k_2} \tilde{\mathbf{t}}_{k_1 k_2\delta\beta} + \tilde{\Omega}^{22}_{\alpha\delta k_1 k_2} \tilde{\mathbf{t}}_{k_1 k_2\beta\gamma} \right. \\ &+ \tilde{\Omega}^{22}_{\beta\gamma k_1 k_2} \tilde{\mathbf{t}}_{k_1 k_2\alpha\delta} + \tilde{\Omega}^{22}_{\beta\delta k_1 k_2} \tilde{\mathbf{t}}_{k_1 k_2\gamma\alpha} + \tilde{\Omega}^{22}_{\gamma\delta k_1 k_2} \tilde{\mathbf{t}}_{k_1 k_2\alpha\beta} \right] \\ &+ \frac{1}{12} \sum_{k_1 k_2 k_3 k_4} \tilde{\Omega}^{04}_{k_1 k_2 k_3 k_4} \left[2(\tilde{\mathbf{t}}_{\alpha k_1 k_2 k_3} \tilde{\mathbf{t}}_{k_4 \beta\gamma\delta} + \tilde{\mathbf{t}}_{\beta k_1 k_2 k_3} \tilde{\mathbf{t}}_{\alpha k_4\gamma\delta} \right. \\ &+ \tilde{\mathbf{t}}_{\gamma k_1 k_2 k_3} \tilde{\mathbf{t}}_{\alpha \beta k_4\delta} + \tilde{\mathbf{t}}_{\delta k_1 k_2 k_3} \tilde{\mathbf{t}}_{\alpha \beta \gamma k_4}) \\ &+ 3(\tilde{\mathbf{t}}_{k_1 k_2 \alpha\beta} \tilde{\mathbf{t}}_{k_3 k_4 \gamma\delta} + \tilde{\mathbf{t}}_{k_1 k_2 \alpha\gamma} \tilde{\mathbf{t}}_{k_3 k_4 \delta\beta} + \tilde{\mathbf{t}}_{k_1 k_2 \alpha\delta} \tilde{\mathbf{t}}_{k_3 k_4 \beta\gamma}) \right] \end{split}$$

- Also need constraint equation for average particle number
- Solve system of equations iteratively
- Update Lagrange parameter each iteration