Importance-Truncated Shell Model

Christina Stumpf Jonas Braun Robert Roth

Institut für Kernphysik

TECHNISCHE UNIVERSITÄT DARMSTADT

Importance Truncation

Motivation

- valence-space shell model is a successful method for the description of a large variety of spectroscopic observables
- IT-SM: simple and straightforward extension of the shell model to larger valence spaces and a wider range of nuclei

Importance Truncation

Motivation

- valence-space shell model is a successful method for the description of a large variety of spectroscopic observables
- IT-SM: simple and straightforward extension of the shell model to larger valence spaces and a wider range of nuclei

Importance Truncation – Idea

- introduce adaptive truncation criterion: importance threshold κ_{\min}
- solve eigenvalue problem in IT model space and obtain approximation for target state
- vary κ_{min} and extrapolate to account for effects of basis states excluded from IT model space
 - threshold extrapolation
 - energy-variance (ΔE^2) extrapolation

Benchmark of the IT-SM: ⁵⁶Ni in pf shell

- significantly reduced valence-space dimension
- very weak C_{min} and κ_{min} dependence of the energies

Benchmark of the IT-SM: ⁵⁶Ni in pf shell

- significantly reduced valence-space dimension
- very weak C_{min} and κ_{min} dependence of the energies
- both extrapolation techniques yield excellent agreement with exact values
- ΔE² extrapolation reproduces state ordering and energy of near-degenerate state

Benchmark of the IT-SM: ⁵⁶Ni in pf shell

- significantly reduced valence-space dimension
- very weak C_{min} and κ_{min} dependence of the energies
- both extrapolation techniques yield excellent agreement with exact values
- ΔE² extrapolation reproduces state ordering and energy of near-degenerate state
- observables can be described equally well

Highlights: pfg_{⁹/2}-shell nuclei ⁶⁰Zn and ⁶⁴Ge

• 60 Zn and 64 Ge in pfg_{9/2} shell are beyond present SM calculations: Dim(60 Zn) = 2.2 × 10¹³

- fast convergence w.r.t. t
- ΔE² extrapolation corrects for truncation effects

Highlights: pfg_{⁹/2}-shell nuclei ⁶⁰Zn and ⁶⁴Ge

■ 60 Zn and 64 Ge in pfg_{9/2} shell are beyond present SM calculations: Dim(60 Zn) = 2.2 × 10¹³ Dim(64 Ge) = 1.7 × 10¹⁴

- fast convergence w.r.t. t
- ΔE² extrapolation corrects for truncation effects

- highly deformed nucleus ⇒ slow convergence
- ΔE² extrapolation reproduces ground-state energy precisely