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Electromagnetic transitions and elastic scattering
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Radiative captures

Motivation: the nuclear reaction in stars

• Radiative captures play an important role in the synthesis of elements in the stars

• Rates of these reactions are essential for describing quantitatively the evolution of

the stars

• Radiative capture processes take place at low energies, out of reach of the

experiments

• ⇒ NUCLEAR MODELS ARE NEEDED



Motivation:pp-chains

• Among the nuclear reactions which take place in the stars, the pp-chains play a
central role. Indeed, they are the first reactions which synthesize nuclear elements
since they do not require any catalyst.

p + p → 2H + e+ + νe

2H + p → 3He + γ

3He + 3He→ α+ p + p 3He + α→ 7Be + γ

7Be + e− → 7Li + νe
7Be + p → 8B + γ

7Li + p → α+ α 8B→ α+ α+ e+ + νe

Branch I Branch II Branch III
≈ 69% ≈ 30.9% ≈ 0.1%

• The relative rates of the 3He(α, γ)7Be and 3He(3He, 2p)4He reactions determines
which percentage of the pp-chain terminations produces neutrinos.



Outline

• What? Radiative captures: 3He(α, γ)7Be and 3H(α, γ)7Li

• Why? Nuclear astrophysical interest.

• How?



Starting point: microscopic approach

• A pointlike nucleons interacting via inter-nucleon potentials

• Pauli-antisymmetrization between nucleons taken into account

• all physical quantities are derived from the internal many-body Schrödinger
equation

HΨ =
( A∑

i=1

p2
i

2mN
+

A∑
i>j=1

vij +
A∑

i>j>k=1

vijk − Tc.m.

)
Ψ = ET Ψ,

where

• vij and vijk are two- and three-nucleon interactions (chiral N3LO NN
interaction*+chiral N2LO NNN interaction† softened via the
similarity-renormalization-group‡)

*D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003)
†P. Navrátil, Few-Body Syst. 41, 117 (2007)
‡S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75, 061001 (2007)



Describing a radiative capture

α+ 3He︸ ︷︷ ︸
scattering state

→ 7Be︸︷︷︸
bound state

+ γ︸︷︷︸
photon emission

Method

• Solving the Scrödinger equation to find the 7Be bound state(s)

• Solving the Scrödinger equation at the positive initial energy (scattering state⇒
non-square-integrable wave function)

• Evaluating the matrix element of the photon emission operator between the initial
and final wave functions



Studying the bound states

Key principle: the VARIATIONAL approach

• Expanding the wave function in a chosen set of N basis functions

Ψ =
N∑
n

cn︸︷︷︸
unknown

Ψn

• Evaluating the norm and Hamiltonian matrices

〈Ψi |Ψj 〉 and 〈Ψi |H|Ψj 〉 for i, j = 1, . . . ,N

• Solving the generalized eigenvalue problem to determine cn〈Ψ1|H|Ψ1〉 · · · 〈Ψ1|H|ΨN〉
...

...
〈ΨN |H|Ψ1〉 · · · 〈ΨN |H|ΨN〉


c1

...
cN

 = E

〈Ψ1|Ψ1〉 · · · 〈Ψ1|ΨN〉
...

...
〈ΨN |Ψ1〉 · · · 〈ΨN |ΨN〉


c1

...
cN


• If the basis is orthonormal⇒ standard eigenvalue problem



No-Core Shell Model

• No-Core Shell Model (NCSM) functions are Slater determinants of
harmonic-oscillator functions (frequency:Ω)

ψi = Aϕn1 l1 j1m1 (r1)ϕn2 l2 j2m2 (r2) . . . ϕnN lN jN mN (rN )

Properties

• With a complete Nmax~Ω, the translational invariance is guaranteed (even if
single-nucleon coordinates are used).

• Second-quantization techniques (very efficient) can be used

• Gaussian asymptotic behavior



Gaussian extension

• For Nmax →∞, the NCSM states are able to describe any square-integrable

function

• However, describing short- and long-range correlation needs huge values of Nmax

(unreachable)

• NCSM basis functions (one center) unadapted to describe cluster states (two

centers, at least)

not convenient for describing

Solution: adding cluster basis functions



NCSM/Resonating Group Method

• In the No-Core Shell Model/Resonating Group Method, the basis states have the
following cluster structure

|ψi 〉 = =
[(
|A1α1Iπ1

1 T1〉|A2α2Iπ2
2 T2〉

)IT Y`(Ω12)
]JM γν(r12)

r12

= Cluster states where the clusters are approximate eigenstates

(ground state and excited states) of the A1- or A2- nucleon

Schrödinger equation within the No-Core Shell Model

• For Nmax →∞, if all excited states of the clusters are considered, any
square-integrable function can be described.

• BUT including many excited cluster states is too time consuming

• ⇒ Combining both approaches



NCSM with Continuum (Clustering) (NCSMC)

• In the NCSMC, the A-nucleon wave function is expanded as

|ΨJπT
A 〉 =

∑
λ

cλ |AλJπT 〉︸ ︷︷ ︸
NCSM

+
∑
ν

∫
dr r2 γ

JπT
ν (r)

r
Aν |ΦJπT

νr 〉︸ ︷︷ ︸
NCSM/RGM

|AλJπT 〉 = approximate eigenstates of the A-nucleon Schrödinger equation
obtained within the No-Core Shell Model.

|ΦJπT
νr 〉 =

[(
|A1α1Iπ1

1 T1〉|A2α2Iπ2
2 T2〉

)IT Y`(Ω12)
] δ(r − r12)

rr12

= Cluster states where the clusters are approximate eigenstates

(ground state and excited states) of the A1- or A2- nucleon

Schrödinger equation within the No-Core Shell Model

*S. Baroni, P. Navratil, and S. Quaglioni, Phys. Rev. Lett 110, 022505 (2013); Phys. Rev. C 87, 034326 (2013)



Describing scattering states

• In the NCSMC, the A-nucleon wave function is expanded as

|ΨJπT
A 〉 =

∑
λ

cλ |AλJπT 〉︸ ︷︷ ︸
NCSM

+
∑
ν

∫
dr r2 γ

JπT
ν (r)

r
Aν |ΦJπT

νr 〉︸ ︷︷ ︸
NCSM/RGM

|AλJπT 〉 = These states are essential to improve the quality of the wave function
at short inter-cluster distances.

|ΦJπT
νr 〉 =

[(
|A1α1Iπ1

1 T1〉|A2α2Iπ2
2 T2〉

)IT Y`(Ω12)
] δ(r − r12)

rr12

= Cluster states where the clusters are approximate eigenstates

(ground state and excited states) of the A1- or A2- nucleon

Schrödinger equation within the No-Core Shell Model

• NB:Linear dependence! *S. Baroni, P. Navratil, and S. Quaglioni, Phys. Rev. Lett 110, 022505 (2013);

Phys. Rev. C 87, 034326 (2013)



NCSMC equations

• Inserting the NCSMC expansion in the variational form of the Schrödinger
equation (cλ and the γJπT

ν are the variational amplitudes)

〈δΨJπT
A |H − ET |ΨJπT

A 〉 = 0,

leads to the NCSMC equations, schematically written as(
Eλδλλ′ 〈Aλ′JπT |HAν |ΦJπT

νr 〉
〈ΦJπT
ν′r ′ |Aν′H|AλJπT 〉 〈ΦJπT

ν′r ′ |Aν′HAν |ΦJπT
νr 〉

)(
c
γ

)
=

E
(

δλλ′ 〈Aλ′JπT |Aν |ΦJπT
νr 〉

〈ΦJπT
ν′r ′ |Aν′ |AλJπT 〉 〈ΦJπT

ν′r ′ |Aν′Aν |Φ
JπT
νr 〉

)(
c
γ

)
• The most challenging (and time-consuming!) part is the calculation of these

hamiltonian and norm kernels, mostly due to the inter-cluster antisymmetrization.

• The NCSMC equations are solved by the coupled-channel microscopic R-matrix
method (MRM) on a Lagrange mesh*, which enables one to enforce the radial
wave function γ(r) to have the expected asymptotic behavior (as well for bound
states as for scattering states).
*M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl. Phys. A 640, 37 (1998)



MRM on a Lagrange mesh

0 a ρ

Internal region External region

Microscopic description

γν (r)
r =

∑
n Aνnfn(r)

[fn(r)] Lagrange basis

-Antisymmetrization between
clusters neglected

-Only Coulomb interaction
between clusters

[D. Baye, P.-H. Heenen, and M. Libert-Heinemann, Nucl. Phys. A 291 (1977) 230]

[P. Descouvemont and D. Baye, Rep. Prog. Phys. 73 (2010) 036301]



• Choosing proper boundary conditions at the channel radius enables one to study
boundstate or scattering wave functions

⇒ 7Be and 7Li and α+3 He and α+3 H scattering can be
studied within the same framework.

• From the electomagnetic matrix elements the 3He(α, γ)7Be and 3H(α, γ)7Li
radiative captures can be studied.

• Only the inter-cluster part of the E1 operator, which should be dominant because
these radiative captures are mostly external, is included now:

~E1 ≈ e
Z1A2 − Z2A1

A
r12

• NB: The NCSMC kernels of this approximate E1 operator can be written from the NCSMC
norm kernels in a rather simple way, which makes relatively easy the evaluation of the E1
transitions.



α +3 He

• NCSMC calculations with SRG N3LO NN potenital (λ = 2.1 fm−1)
• Preliminary: Nmax = 12;~Ω = 20 MeV
• 3He, α ground state
• 8 eigenstates with negative parity of 7Be
• 6 eigenstates with positive parity of 7Be
• Eth(7Be) = −1.70 MeV ; Eexp(7Be) = −1.59 MeV



α +3 H

• NCSMC calculations with SRG N3LO NN potenital (λ = 2.1 fm−1)
• Preliminary: Nmax = 12;~Ω = 20 MeV
• 3H, α ground state
• 8 eigenstates with negative parity of 7Li

• 6 eigenstates with positive parity of 7Li
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3He(α, γ)7Be
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3He(α, γ)7Be
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7Be and 7Li ground states

E(MeV) λ (fm−1)
7Be 3/2− -1.70 2.1

-1.33 2.2
-1.59 exp

7Li 3/2− -2.62 2.1
-2.24 2.2
-2.47 exp



3H(α, γ)7Li
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3H(α, γ)7Li
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Conclusion

• The NCSMC enables us to describe the boud states and the scattering states
within the same framework.

• Hence, the radiative capture processes can be described in a rigorous way.
• The approach is applied to the 7-nucleon system:

− the 7Be and 7Li ground states
− the α +3 He and α +3 H elastic scattering
− and the 3He(α, γ)7Be and 3H(α, γ)7Li radiative captures

are studied.

• The results are qualitatively in agreement with the experiments.

• A quantitative comparison requires to increase the size of the NCSMC basis and
to include three-nucleon forces.

• The accuracy could be improved by considering the full E1 operator (especially for
the highest photon energies, which are considered).



Outline

• What?

Elastic scattering: α+ p

• Why?

Used to characterize 1H and 4He impurities in materials surfaces/Small

enough for reaching convergence

• How?

With the No-Core Shell Model with Continuum (NCSMC) approach

Ref: G. Hupin, S. Quaglioni, P. Navrátil, Phys. Rev. C 90 (2014) 061601(R)
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α + p phase shifts

  

Nmax = 13, ~Ω = 20MeV, 14 5Li states, λ = 2 fm−1
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Conclusion

• Based on two- and three-nucleon forces, the
NCSMC approach enables the first ab initio
description of α + p scattering in good
agreement with experimental data.



Prospect

• Using these wave functions to calculate the α+ p bremsstrahlung (radiative
transition between continuum states)

α+ p → α+ p + γ

• Motivation: Preliminary work to the t(d , γn)α (interesting for fusion experiments)

  

J. Dohet-Eraly, S. Quaglioni, P. Navrátil, G. Hupin, arXiv:1501.02744.
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