Resonances and continuum states in fermionic molecular dynamics

Thomas Neff
Workshop on "Progress in Ab Initio Techniques in Nuclear Physics"

TRIUMF, Vancouver, Canada
February 17-20, 2015

Overview

Realistic Effective Nucleon-Nucleon interaction:

Unitary Correlation Operator Method
Many-Body Approach:
Fermionic Molecular Dynamics

Application:

${ }^{3} \mathbf{H e}(\alpha, \gamma){ }^{7}$ Be Radiative Capture
Microscopic Cluster Model for ${ }^{12} \mathbf{C}$

- three α and ${ }^{8} \mathrm{Be}-\alpha$ configurations
- Coulomb asymptotics: resonances and scattering states

FMD calculation for ${ }^{12} \mathbf{C}$

Unitary Correlation Operator Method

Correlation Operator

- induce short-range (two-body) central and tensor correlations into the many-body state

$$
\underset{\sim}{C}=\underset{\sim}{C_{\Omega}}{\underset{\sim}{r}}_{r}=\exp \left[-i \sum_{i<j} \underset{\sim}{g} \Omega, i j\right] \exp \left[-i \sum_{i<j} \underset{\sim}{r} r_{r, i j}\right], \quad \underset{\sim}{C} \underset{\sim}{C}=\underset{\sim}{1}
$$

- correlation operator should conserve the symmetries of the Hamiltonian and should be of finite-range

Correlated Operators

- correlated operators will have contributions in higher cluster orders

$$
{\underset{\sim}{C}}^{\dagger} \underset{\sim}{O} \underset{\sim}{C}=\hat{\sim}_{\hat{O}}^{[1]}+{\underset{\sim}{\hat{O}}}^{[2]}+{\underset{\sim}{\hat{O}}}^{[3]}+\ldots
$$

- two-body approximation: correlation range should be small compared to mean particle distance

Correlated Interaction

$$
{\underset{\sim}{C}}^{\dagger}(\underset{\sim}{T}+\underset{\sim}{V}) \underset{\sim}{C}=\underset{\sim}{T}+\underset{\sim}{V} \text { Ucom }+\underset{\sim}{V}{\underset{U C O M}{[3]}+\ldots}^{[3]}
$$

- correlated interaction phase shift equivalent to bare interaction by construction

- UCOM
 : Correlations and Energies

central correlator $\underset{\sim}{C} r$ shifts density out of the repulsive core tensor correlator ${\underset{\sim}{C}}_{\Omega}$ aligns density with spin orientation

- ucom
 - Correlations and Energies

two-body densities

central correlator $\underset{\sim}{C} r$ shifts density out of the repulsive core tensor correlator $\underset{\sim}{C} \Omega$ aligns density with spin orientation

: Operator Representation of $V_{\text {Ucom }}$

$$
{\underset{\sim}{C}}^{\dagger}(\underset{\sim}{T}+\underset{\sim}{V}) \underset{\sim}{T}
$$

$$
\begin{aligned}
& +\sum_{S T} \hat{V}_{c}^{S T}(r)+\frac{1}{2}\left(\underset{\sim}{p_{r}}{ }^{2} \hat{V}_{p^{2}}^{S T}(r)+\hat{V}_{p^{2}}^{S T}(r) \underset{\sim}{p_{r}}{ }^{2}\right)+\hat{V}_{l^{2}}^{S T}(r){\underset{\sim}{I}}^{2} \\
& \text { central potentials } \\
& +\sum_{T} \hat{V}_{l s}^{T}(r) \underset{\sim}{\boldsymbol{I}} \cdot \underset{\sim}{\mathbf{S}}+\hat{V}_{l^{2} l s}^{T}(r) \underset{\sim}{\boldsymbol{I}}{ }_{\sim}^{\mathbf{I}} \cdot \underset{\sim}{\mathbf{S}} \\
& \text { spin-orbit potentials } \\
& +\sum_{T} \hat{V}_{t}^{T}(r){\underset{\sim}{12}}(\mathbf{r}, \mathbf{r})+\hat{V}_{t r p_{\Omega}}^{T}(r){\underset{\sim}{r}}_{r}{\underset{\sim}{S}}_{12}\left(\mathbf{r}, \mathbf{p}_{\Omega}\right)+\hat{V}_{t l l}^{T}(r){\underset{\sim}{12}}^{S_{12}}(\mathbf{I}, \mathbf{I})+ \\
& \hat{V}_{t p_{\Omega} p_{\Omega}}^{T}(r) \underset{\sim}{S_{12}}\left(\mathbf{p}_{\boldsymbol{\Omega}}, \mathbf{p}_{\Omega}\right)+\hat{V}_{12 t p_{\Omega} p_{\Omega}}^{T}(r){ }_{\sim}^{I}{ }^{2}{\underset{\sim}{S}}_{12}\left(\mathbf{p}_{\Omega}, \mathbf{p}_{\boldsymbol{\Omega}}\right)
\end{aligned}
$$

tensor potentials

Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$
|Q\rangle=\mathcal{\sim}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes\left|q_{A}\right\rangle\right)
$$

- antisymmetrized A-body state

Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$
|Q\rangle=\mathcal{\sim}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes\left|q_{A}\right\rangle\right)
$$

- antisymmetrized A-body state

Molecular

single-particle states

$$
\langle\mathbf{x} \mid q\rangle=\sum_{i} c_{i} \exp \left\{-\frac{\left(\mathbf{x}-\mathbf{b}_{i}\right)^{2}}{2 a_{i}}\right\} \otimes\left|\chi^{\uparrow}{ }_{i}, \chi^{\downarrow}{ }_{i}\right\rangle \otimes|\xi\rangle
$$

- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_{i} encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_{i} is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655
Neff, Feldmeier, Nucl. Phys. A738 (2004) 357

Fermionic

Slater determinant

$$
|Q\rangle=\mathcal{\sim}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes\left|q_{A}\right\rangle\right)
$$

- antisymmetrized A-body state

Molecular

single-particle states

$$
\langle\mathbf{x} \mid q\rangle=\sum_{i} c_{i} \exp \left\{-\frac{\left(\mathbf{x}-\mathbf{b}_{i}\right)^{2}}{2 a_{i}}\right\} \otimes\left|\chi^{\uparrow}{ }_{i}, \chi^{\downarrow}\right\rangle \otimes|\xi\rangle
$$

- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_{i} encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_{i} is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655
Neff, Feldmeier, Nucl. Phys. A738 (2004) 357

Fermionic

Slater determinant

$$
|Q\rangle=\mathcal{\sim}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes\left|q_{A}\right\rangle\right)
$$

- antisymmetrized A-body state

Molecular

single-particle states

$$
\langle\mathbf{x} \mid q\rangle=\sum_{i} c_{i} \exp \left\{-\frac{\left(\mathbf{x}-\mathbf{b}_{i}\right)^{2}}{2 a_{i}}\right\} \otimes\left|\chi^{\uparrow}{ }_{i}, \chi^{\downarrow}\right\rangle \otimes|\xi\rangle
$$

- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_{i} encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_{i} is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle st

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655
FMD basis contains HO shell model and microscopic cluster model
as limiting cases

- FMD

: Symmetries and Projection

Breaking of symmetries

- Slater determinants $|Q\rangle$ may break symmetries of the Hamiltonian with respect to parity, rotations and translations

Projection

- Restore symmetries by projection

$$
\underset{\sim}{P^{\pi}}=\frac{1}{2}(1+\pi \underset{\sim}{\Pi}), \quad{\underset{\sim}{P}}_{M K}^{\prime}=\frac{2 J+1}{8 \pi^{2}} \int \mathrm{~d}^{3} \Omega D_{M K}^{\prime}{ }^{\star}(\Omega) \underset{\sim}{R}(\Omega), \quad \underset{\sim}{P}=\frac{1}{(2 \pi)^{3}} \int d^{3} X \exp \{-i(\underset{\sim}{\mathbf{P}}-\mathbf{P}) \cdot \mathbf{X}\}
$$

Multiconfiguration Mixing

- diagonalize Hamiltonian in a set of projected intrinsic states $\left\{\left|Q^{(a)}\right\rangle, a=1, \ldots, N\right\}$

$$
\begin{gathered}
\left|\Psi ; J^{\pi} M \alpha\right\rangle=\sum_{K a} \underset{\sim}{P^{\pi}}{\underset{\sim}{P}}_{M K}^{\prime}{\underset{\sim}{P}}^{\mathbf{P}=0}\left|Q^{(a)}\right\rangle c_{K a}^{\alpha} \\
\sum_{K^{\prime} b} \underbrace{\left\langle Q^{(a)}\right| \underset{\sim}{H}{\underset{\sim}{P}}^{\pi}{\underset{\sim}{P}}_{K K^{\prime}}{\underset{\sim}{P}}^{\mathbf{P}=0}\left|Q^{(b)}\right\rangle}_{\text {Hamiltonian kernel }} c_{K^{\prime} b}^{\alpha}=E^{J^{\pi} \alpha} \sum_{K^{\prime} b} \underbrace{\left\langle Q^{(a)}\right|{\underset{\sim}{P}}^{\pi}{\underset{\sim}{K K}}^{\prime}{ }^{\prime}{\underset{\sim}{P}}^{\mathbf{P}=0}\left|Q^{(b)}\right\rangle}_{\text {norm kernel }} c_{K^{\prime} b}^{\alpha}
\end{gathered}
$$

${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$ radiative capture $\frac{5.6058}{{ }^{6} \mathrm{Li}+\mathrm{p}}$

one of the key reactions in the solar pp-chains

Effective Nucleon-Nucleon interaction:

AV18-UCOM(SRG) $\alpha=0.20 \mathbf{f m}^{4}-\lambda \approx \mathbf{1 . 5} \mathbf{f m}^{-1}$

Many-Body Approach:

Fermionic Molecular Dynamics

- Internal region: VAP configurations with radius constraint
- External region: Brink-type cluster configurations
- Matching to Coulomb solutions: Microscopic R-matrix method

Results:

- ${ }^{7} \mathrm{Be}$ bound and scattering states
- Astrophysical S-factor

Neff, Phys. Rev. Lett. 106, 042502 (2011)

Frozen configurations

- antisymmetrized wave function built with ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ FMD clusters up to channel radius $a=12 \mathrm{fm}$

Polarized configurations

- FMD wave functions obtained by Variation after Projection on $1 / 2^{-}, 3 / 2^{-}$, $5 / 2^{-}, 7 / 2^{-}$and $1 / 2^{+}, 3 / 2^{+}$and $5 / 2^{+}$ combined with radius constraint in the interaction region

Boundary conditions

- Match relative motion of clusters at channel radius to Whittaker/Coulomb functions with the microscopic R matrix method of the Brussels group D. Baye, P.-H. Heenen, P. Descouvemont

${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$
: p-wave Bound and Scattering States

Bound states

		Experiment	FMD
${ }^{7} \mathrm{Be}$	$E_{3 / 2-}$	-1.59 MeV	-1.49 MeV
	$E_{1 / 2-}$	-1.15 MeV	-1.31 MeV
	r_{ch}	$2.647(17) \mathrm{fm}$	2.67 fm
	Q	-	-6.83 efm
${ }^{7} \mathrm{Li}$	$E_{3 / 2-}$	-2.467 MeV	-2.39 MeV
	$E_{1 / 2-}$	-1.989 MeV	-2.17 MeV
	r_{ch}	$2.444(43) \mathrm{fm}$	2.46 fm
	Q	$-4.00(3) \mathrm{efm}$	$-3.91 e \mathrm{fm}^{2}$

- centroid of bound state energies well described if polarized configurations included
- tail of wave functions tested by charge radii and quadrupole moments

Phase shift analysis:
Spiger and Tombrello, PR 163, 964 (1967)

dashed lines - frozen configurations only solid lines - polarized configurations in interaction region included

- Scattering phase shifts well described, polarization effects important

${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$
 : s-, d - and f-wave Scattering States

dashed lines - frozen configurations only - solid lines - FMD configurations in interaction region included

- polarization effects important
- s - and d-wave scattering phase shifts well described
- f-wave splittings too small, additional spin-orbit strength from threebody forces expected

$$
\begin{gathered}
\text { S-factor: } \\
S(E)=\sigma(E) E \exp ^{2}\{2 \pi \eta\} \\
\eta=\frac{\mu Z_{1} Z_{2} e^{2}}{k}
\end{gathered}
$$

Nara Singh et al., PRL 93, 262503 (2004)
Bemmerer et al., PRL 97, 122502 (2006)
Confortola et al., PRC 75, 065803 (2007)
Brown et al., PRC 76, 055801 (2007) Di Leva et al., PRL 102, 232502 (2009)

- dipole transitions from $1 / 2^{+}, 3 / 2^{+}, 5 / 2^{+}$scattering states into $3 / 2^{-}, 1 / 2^{-}$bound states
\Rightarrow FMD is the only model that describes well the energy dependence and normalization of new high quality data
\leadsto fully microscopic calculation, bound and scattering states are described consistently

: Overlap Functions and Dipole Matrixelements

- Overlap functions from projection on RGM-cluster states
- Coulomb and Whittaker functions matched at channel radius $a=12 \mathrm{fm}$
- Dipole matrix elements calculated from overlap functions reproduce full calculation within 2\%
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified
- $\left.{ }^{3} H(\alpha, \gamma)\right)^{7 i}$

S-Factor

$$
\begin{gathered}
\text { S-factor: } \\
S(E)=\sigma(E) E \exp ^{2}\{2 \pi \eta\} \\
\eta=\frac{\mu z_{1} z_{2} e^{2}}{k}
\end{gathered}
$$

Brune et al., PRC 50, 2205 (1994)

- isospin mirror reaction of ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}$
- ${ }^{7}$ Li bound state properties and phase shifts well described
\Rightarrow FMD calculation describes energy dependence of Brune et al. data but cross section is larger by about 15%

The Triple Alpha Process

Cluster States in ${ }^{12} \mathbf{C}$

Structure

- Is the Hoyle state a pure α-cluster state ? $\frac{7.2747}{3 \alpha}$
- Second 2^{+}state

Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013)

- Second 4^{+}state

Freer et al., Phys. Rev. C 83, 034314 (2011)

- Other states in the continuum

Fynbo et al., ...
\Rightarrow Include continuum in the calculation!
\Rightarrow Compare microscopic α-cluster model and FMD

Neff, Feldmeier, arXiv:1409.3726

- Cluster States in ${ }^{12} \mathrm{C}$
: Cluster States in the NCSM ?

Hoyle state and other cluster states missing!

Maris, Vary, Calci, Langhammer, Binder, Roth, Phys. Rev. C 90, 014314 (2014)

- Microscopic α-Cluster Model
: Model space in internal region

$$
\rho^{2}=\frac{1}{2} \mathbf{r}^{2}+\frac{2}{3} \mathbf{R}^{2}
$$

Hyperradius

Model Space

- include all possible configurations on triangular grid ($d=1.4 \mathrm{fm}$) up to a certain hyperradius ρ
- no restriction on relative angular momenta

Basis States

- Intrinsic states are projected on parity and angular momentum

$$
\begin{aligned}
& \left|\psi_{J M K \pi}^{3 \alpha}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}\right)\right\rangle= \\
& \quad{\underset{\sim}{\sim}}_{\sim}^{\sim}{\underset{\sim}{\sim}}_{M K}^{\prime} \mathcal{\sim}\left\{\left|\psi^{4} \mathrm{He}\left(\mathbf{R}_{1}\right)\right\rangle \otimes\left|\psi^{4} \mathrm{He}\left(\mathbf{R}_{2}\right)\right\rangle \otimes\left|\psi^{4} \mathrm{He}\left(\mathbf{R}_{3}\right)\right\rangle\right\}
\end{aligned}
$$

Volkov Interaction

- simple central interaction
- parameters adjusted to give reasonable α binding energy and radius, $\alpha-\alpha$ scattering data, adjusted to reproduce ${ }^{12} \mathrm{C}$ ground state energy
x only reasonable for ${ }^{4} \mathrm{He},{ }^{8} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ nuclei

Model Space

- ${ }^{8} \mathrm{Be}-{ }^{4} \mathrm{He}$ cluster configurations with generator coordinate R
- ${ }^{8} \mathrm{Be}$ ground state $\left(0_{1}^{+}\right)$and pseudo states ($2+0_{2}^{+}, 2_{2}^{+}, 4_{1}^{+}$) obtained by diagonalizing $\alpha-\alpha$ configurations up to $r=10 \mathrm{fm}$

Basis States

- ${ }^{12} \mathrm{C}$ basis states are obtained by double projection:

Project first ${ }^{8}$ Be

$$
\left|\psi_{I K}^{8} \mathrm{Be}\right\rangle=\sum_{i} \underset{\sim}{P_{K 0}^{I}} \mathcal{A}\left\{\left|\psi^{4} \mathrm{He}\left(-\frac{r_{i}}{2} \mathbf{e}_{z}\right\rangle \otimes\right| \psi^{4} \mathrm{He}\left(+\frac{r_{i}}{2} \mathbf{e}_{z}\right\rangle\right\} c_{i}^{I}
$$

then the combined wave function

$$
\left|\psi_{I K ; j M \pi}^{8}{ }^{8}{ }^{4} \mathrm{He}\left(R_{j}\right)\right\rangle=\underset{\sim}{P^{\pi}}{\underset{\sim}{\sim}}_{M K}^{\prime} \underset{\sim}{\mathcal{A}}\left\{\left.\left|\psi_{I K}^{8} \mathrm{Be}\left(-\frac{R_{j}}{3} \mathbf{e}_{z}\right)\right\rangle \otimes \right\rvert\, \psi^{4} \mathrm{He}\left(+\frac{2 R_{j}}{3} \mathbf{e}_{z}\right\rangle\right\}
$$

- will allow to match to Coulomb asymptotics
- Microscopic α-Cluster Model
: ${ }^{8}$ Be- α Energy Surfaces

$J^{\pi}=2^{+}$

- energy surfaces contain localization energy for relative motion of ${ }^{8} \mathrm{Be}$ and α
- 2^{+}energy surface depends strongly on orientation of ${ }^{8} \mathrm{Be} 2^{+}$state: $K=2$ most attractive

Microscopic α-Cluster Model

: Bound state approximation - Convergence ?

	$\rho<6 \mathrm{fm}$	$\begin{aligned} & \rho<6 \mathrm{fm}, \\ & R<9 \mathrm{fm} \end{aligned}$	$\begin{aligned} & \rho<6 \mathrm{fm}, \\ & R<12 \mathrm{fm} \end{aligned}$	$\begin{aligned} & \rho<6 \mathrm{fm}, \\ & R<15 \mathrm{fm} \end{aligned}$	Experiment	
$E\left(0_{1}^{+}\right)$	-89.63	-89.64	-89.64	-89.64	-92.16	
$E^{*}\left(2_{1}^{+}\right)$	2.53	2.54	2.54	2.54	4.44	
$E^{*}\left(0_{2}^{+}\right), \Gamma_{\alpha}\left(0_{2}^{+}\right)$	8.53	7.82	7.78	7.76	$7.65,(8.5 \pm 1.0) 10^{-6}$	
$E^{*}\left(2_{2}^{+}\right), \Gamma_{\alpha}(2+)$	10.11	9.18	9.08	8.93	10.13(5), 2.08 ${ }_{-0.26}^{+0.33}$	[3]
$r_{\text {charge }}\left(0_{1}^{+}\right)$	2.53	2.53	2.53	2.53	2.47(2)	
$r\left(0_{1}^{+}\right)$	2.39	2.39	2.39	2.39	-	
$r\left(0_{2}^{+}\right)$	3.21	3.68	3.78	3.89	-	
$B\left(E 2,2_{1}^{+} \rightarrow 0_{1}^{+}\right)$	9.03	9.12	9.08	9.08	7.6(4)	
M (EO, $\left.0_{1}^{+} \rightarrow 0_{2}^{+}\right)$	7.20	6.55	6.40	6.27	5.47(9)	[2]
$B\left(E 2,2_{2}^{+} \rightarrow 0_{1}^{+}\right)$	3.65	2.48	2.09	1.33	$1.57_{-0.11}^{+0.14}$	[3]

- properties of resonances (Hoyle state and second 2^{+}state) can not be determined in bound state approximation in an unambigouos way
[1] Ajzenberg-Selove, Nuc. Phys. A506, 1 (1990)
[2] Chernykh et al., Phys. Rev. Lett. 105, 022501 (2010)
[3] Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013); H. Weller, private communication
- Microscopic α-cluster model
- Matching to Coulomb asymptotics

Model Space

- Internal region: 3- α configurations on a grid
- External region: ${ }^{8} \operatorname{Be}\left(0^{+}, 2^{+}, 4^{+}\right)$- α configurations
- Asymptotically: only Coulomb interaction between ${ }^{8} \mathrm{Be}$ and ${ }^{4} \mathrm{He}$ clusters

GCM basis state expressed in RGM basis

- Microscopic GCM wave functions are functions of single-particle coordinates: internal wave functions of cluster, the relative motion of the clusters and the total center-of-mass motion are entangled
- Write GCM basis state in external region with RGM basis states

$$
\left|\Psi_{I K j M \pi}^{8 \mathrm{Be}, 4}{ }^{4} \mathrm{He}\left(R_{j}\right)\right\rangle=\sum_{L}\left\langle\begin{array}{cc|c}
I & L & J \\
K & 0 & K
\end{array}\right\rangle \int d r r^{2} \Gamma_{L}\left(R_{j} ; r\right)\left|\Phi_{(I L) j M \pi}^{88}(r)\right\rangle \otimes\left|\Phi^{\mathrm{cm}}\right\rangle
$$

with $\left(\pi=(-1)^{L}\right)$

$$
\left\langle\boldsymbol{\rho}, \xi_{a}, \xi_{b} \mid \Phi_{(I L)) M \pi}^{88 \mathrm{Be},{ }^{4} \mathrm{He}}(r)\right\rangle=\sum_{M_{I}, M_{L}}\left\langle\left.\begin{array}{cc}
I & L \\
M_{I} & M_{L}
\end{array} \right\rvert\, \bar{M}\right\rangle\left\langle\underset{\sim}{\mathcal{A}}\left\{\frac{\delta(\rho-r)}{r^{2}} \Phi_{I M_{I}}^{8 \mathrm{Be}}\left(\xi_{a}\right) \Phi^{4}{ }^{4 \mathrm{He}}\left(\xi_{b}\right) Y_{L M_{L}}(\hat{\rho})\right\}\right.
$$

- asymptotically RGM states have good channel spin I and orbital angular momentum L
- Microscopic α-cluster model
: Matching to Coulomb asymptotics

RGM norm kernel and Overlap functions

- RGM norm kernel reflects effects of antisymmetrization, channel $c=(I L)$)

$$
N_{c, c^{\prime}}\left(r, r^{\prime}\right)=\left\langle\Phi_{c}(r) \mid \Phi_{c^{\prime}}\left(r^{\prime}\right)\right\rangle^{r, r^{\prime} \rightarrow \infty} \delta_{c c^{\prime}} \frac{\delta\left(r-r^{\prime}\right)}{r r^{\prime}}
$$

- Overlap functions can be interpreted as wave functions for point-like clusters

$$
\psi_{c}(r)=\int d r^{\prime} r^{\prime 2} N_{c, c^{\prime}}^{-1 / 2}\left(r, r^{\prime}\right)\left\langle\Phi_{c^{\prime}}\left(r^{\prime}\right) \mid \psi\right\rangle
$$

Matching to the asymptotic solution

- Use using multichannel microscopic R-matrix approach Descouvemont, Baye, Phys. Rept. 73, 036301 (2010)
- Check that results are independent from channel radius: used $a=16.5 \mathrm{fm}$ here

	channel		
	radius		
$3 \alpha+{ }^{8} \mathrm{Be}-\alpha$ configs	${ }^{8} \mathrm{Be}-\alpha$ configs		cluster separation R

- Microscopic α-cluster model
: Matching to Coulomb asymptotics

Bound states

- Whittaker functions

$$
\psi_{c}(r)=A_{c} \frac{1}{r} W_{-\eta_{c} L_{c}+1 / 2}\left(2 \kappa_{c} r\right), \quad \kappa_{c}=\sqrt{-2 \mu\left(E-E_{c}\right)}
$$

Resonances

- purely outgoing Coulomb, k complex

$$
\psi_{c}(r)=A_{c} \frac{1}{r} O_{L_{c}}\left(\eta_{c}, k_{c} r\right), \quad k_{c}=\sqrt{2 \mu\left(E-E_{c}\right)}
$$

Scattering states

- in- and outgoing Coulomb (incoming channel c_{0})

$$
\psi_{c}(r)=\frac{1}{r}\left\{\delta_{L_{c}, L_{0}} I_{L_{c}}\left(\eta_{c}, k_{c} r\right)-S_{c, c_{0}} O_{L_{c}}\left(\eta_{c}, k_{c} r\right)\right\}, \quad k_{c}=\sqrt{2 \mu\left(E-E_{c}\right)}
$$

- Diagonal phase shifts and inelasticity parameters: $S_{c c}=\eta_{c} \exp \left\{2 i \delta_{c}\right\}$
- Eigenphases: $S=U^{-1} D U, D_{\alpha \alpha}=\exp \left\{2 i \delta_{\alpha}\right\}$
- Cluster Model: ${ }^{8} \operatorname{Be}\left(0_{1}^{+}, 2_{1}^{+}\right)-\alpha$ Continuum
- 0^{+}Phase shifts

Eigenphaseshifts

Gamow states

$\mathrm{E}[\mathrm{MeV}]$			
$\Gamma_{\alpha}[\mathrm{MeV}]$			
0_{2}^{+}	0.29	$1.78 \cdot 10^{-5}$	
O_{3}^{+}	4.11	0.12	
0_{4}^{+}	4.76	1.57	(?)

Phaseshifts

Inelasticities

- non-resonant background
- strong coupling between ${ }^{8} \mathrm{Be}\left(0^{+}\right)$and ${ }^{8} \mathrm{Be}\left(2^{+}\right)$channel at 4.1 MeV
- Hoyle state missed when scanning the phase shifts
- stability of broad resonance with respect to channel radius?
- Cluster Model: ${ }^{8} \operatorname{Be}\left(0^{+}, 2_{1}^{+}\right)-\alpha$ Continuum
- 2^{+}Phase shifts

Eigenphaseshifts

Gamow states

	$\mathrm{E}[\mathrm{MeV}]$	$\Gamma_{\alpha}[\mathrm{MeV}]$
2_{2}^{+}	1.51	0.32
2_{3}^{+}	4.31	0.14

Phaseshifts

Inelasticities

- non-resonant background
- $L=2^{8} \mathrm{Be}\left(0^{+}\right)$and ${ }^{8} \mathrm{Be}\left(2^{+}\right)$ resonances

Microscopic α-Cluster Model

 Including Continuum| | $\rho<6 \mathrm{fm}$
 $R<9 \mathrm{fm}$ | $\rho<6 \mathrm{fm}$
 $R<12 \mathrm{fm}$ | $\rho<6 \mathrm{fm}$
 $R<15 \mathrm{fm}$ | $\rho<6 \mathrm{fm}$
 Continuum | Experiment |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $E\left(0_{1}^{+}\right)$ | -89.64 | -89.64 | -89.64 | -89.64 | -92.16 |
| $E^{*}\left(2_{1}^{+}\right)$ | 2.54 | 2.54 | 2.54 | 2.54 | 4.44 |
| $E^{*}\left(O_{2}^{+}\right), \Gamma_{\alpha}\left(0_{2}^{+}\right)$ | 7.82 | 7.78 | 7.76 | $7.76,3.04 \cdot 10^{-3}$ | $7.65,(8.5 \pm 1.0) \cdot 10^{-6}$ |
| $E^{*}\left(2_{2}^{+}\right), \Gamma_{\alpha}\left(2_{2}^{+}\right)$ | 9.18 | 9.08 | 8.93 | $8.98,0.46$ | $10.13(5), 2.08_{-0.26}^{+0.33}$ |
| $r_{\text {charge }}\left(0_{1}^{+}\right)$ | 2.53 | 2.53 | 2.53 | 2.53 | $2.47(2)$ |
| $r\left(0_{1}^{+}\right)$ | 2.39 | 2.39 | 2.39 | 2.39 | - |
| $r\left(0_{2}^{+}\right)$ | 3.68 | 3.78 | 3.89 | $4.08+0.07 \mathrm{i}$ | - |
| $B\left(E 2,2_{1}^{+} \rightarrow 0_{1}^{+}\right)$ | 9.12 | 9.08 | 9.08 | 9.08 | $7.6(4)$ |
| $M\left(E 0,0_{1}^{+} \rightarrow 0_{2}^{+}\right)$ | 6.55 | 6.40 | 6.27 | $6.02+0.01 \mathrm{i}$ | $5.47(9)$ |
| $B\left(E 2,2_{2}^{+} \rightarrow 0_{1}^{+}\right)$ | 2.48 | 2.09 | 1.33 | $2.11+1.41 \mathrm{i}$ | $1.57_{-0.11}^{+0.14}$ |

- Resonances are calculated as Gamow states
- Matrix elements including resonances are regulated according to Berggren and Gyarmati
- Imaginary part provides information about uncertainty of matrix elements

Berggren, Nucl. Phys. A109, 265 (1968)
Gyarmati, Krisztinkovics, Vertse, Phys. Lett. B41, 475 (1972)
Berggren, Phys. Lett. B373, 1 (1996)

- Microscopic α-Cluster Model

- Strength distributions
- Use real continuum (scattering states)
- Might be the better way to compare to experiment, especially for broad and overlapping resonances (background contributions)

Zimmermann et al.,
Phys. Rev. Lett. 110, 152502 (2013)

Work in Progress:
 FMD calculations with ${ }^{8} \mathrm{Be}-\alpha$ continuum

UCOM interaction

- AV18 UCOM(SRG) $\left(\alpha=0.20 \mathrm{fm}^{4}, \lambda=1.5 \mathrm{fm}^{-1}\right)$
- Increase strength of spin-orbit force by a factor of two to partially account for omitted three-body forces
${ }^{8}$ Be- α Continuum
- To get a reasonable description of ${ }^{8} \mathrm{Be}$ it is essential to include polarized configurations
\Rightarrow Calculate strength distributions
\Rightarrow Investigate non-cluster states: non-natural parity states, $T=1$ states, $\mathbf{M} 1$ transitions, ${ }^{12} \mathbf{B}$ and ${ }^{12} \mathbf{N} \beta$-decay into ${ }^{12} \mathbf{C}, \ldots$

Model space in internal region

Model Space

- no assumption of α-clustering
- complete basis not feasible, find the "most important" basis states
- determine wave packet parameters by variation

VAP, VAP with constraints, Multiconfiguration-VAP

For each angular momentum ($0^{+}, 1^{+}, 2^{+}, \ldots$)

- VAP: vary energy of projected Slater determinant ${\underset{\sim}{P}}^{\pi}{ }_{\sim}^{P}{ }_{M K}^{\prime}\left|Q\left(q_{i}\right)\right\rangle$ with respect to all parameters q_{i}
- VAP(R): create additional basis states by variation with a constraint on the radius of the intrinsic state
- MC-VAP: keep VAP state fix and vary the parameters of a second Slater determinant to minimize the energy of the second eigenstate in a multiconfiguration mixing calculation
- MC-VAP(R): create additional basis states by adding a constraint on the radius of the second intrinsic state

: Important Configurations

- Calculate the overlap with FMD basis states to find the most important contributions to the eigenstates

$$
\begin{aligned}
& \left|\left\langle\cdot \mid 0_{1}^{+}\right\rangle\right|=0.94 \\
& \left|\left\langle\cdot \mid 2_{1}^{+}\right\rangle\right|=0.93
\end{aligned}
$$

$$
\left|\left\langle\cdot \mid 3_{1}^{-}\right\rangle\right|=0.91
$$

$\left|\left\langle\cdot \mid 2_{2}^{+}\right\rangle\right|=0.50 \quad\left|\left\langle\cdot \mid 2_{2}^{+}\right\rangle\right|=0.49$
$\left|\left\langle\cdot \mid 2_{2}^{+}\right\rangle\right|=0.44$
$\left|\left\langle\cdot \mid 2_{2}^{+}\right\rangle\right|=0.41$
FMD basis states are not orthogonal!
0_{2}^{+}and 2_{2}^{+}states have no rigid intrinsic structure

- FMD/Cluster Model: ${ }^{8}$ Be- α Continuum Spectra

- FMD: ${ }^{8}$ Be wave functions to be improved

Unitary Correlation Operator Method

- Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

- Gaussian wave-packet basis contains HO shell model and Brink-type cluster states

${ }^{3} \mathrm{He}(\alpha, \gamma){ }^{7} \mathrm{Be}$ Radiative Capture

- Bound states, scattering states, transitions from the continuum

Microscopic cluster model for ${ }^{12} \mathbf{C}$

- Model space with 3α and ${ }^{8} \mathrm{Be}-\alpha$ configurations
- Matching with Coulomb continuum, resonances and scattering states
- Hoyle state band build on ${ }^{8} \mathrm{Be}(\mathrm{gs})-\alpha$

FMD calculations for ${ }^{12} \mathbf{C}$

- VAP and Multiconfig-VAP in internal region, ${ }^{8} \mathrm{Be}-\alpha$ in external region
\Rightarrow Investigate EM and GT transitions to the continuum
$\Rightarrow{ }^{8} \mathrm{Be}-\alpha$ vs real three-body asymptotics ?

