Operator evolution for ab initio theory of light nuclei

Micah Schuster and Calvin Johnson San Diego State University

Sofia Quaglioni and Eric Jurgenson Lawrence Livermore National Laboratory

> Petr Navrátil TRIUMF

TRIUMF Theory Workshop 2015

Introduction

The similarity renormalization group (SRG) provides a powerful method for rigorous *ab initio* NCSM calculations.

But, rigorous calculations require operator evolution!

Introduction

The similarity renormalization group (SRG) provides a powerful method for rigorous *ab initio* NCSM calculations.

But, rigorous calculations require operator evolution!

Previous work on operator evolution:

- I. Stetcu *et al.*, PRC **71**, 044325 (2005)
 One and two-body effective operator via OLS
- E. Anderson *et al.*, PRC **82**, 054001 (2010) Two-body evolution for the A=2 system.
- M. Schuster *et al.*, PRC **90**, 011301(R) (2014) Two- and three-body operator evolution. Apply them to the A=3 and A=4 system.

For this work we use the NCSM in Jacobi coordinates with chiral interactions at N3LO for NN and N2LO for NNN

The similarity renormalization group

Series of unitary transformations on the Hamiltonian that decouple high- and lowmomentum parts of the interaction

$$\frac{dH_s}{ds} = [[T, H_s], H_s] \qquad \lambda = s^{-1/4}$$

• Makes the many-body problem more tractable

Jurgenson, Navrátil & Furnstahl, Phys. Rev. C 83, 034301 (2011)

The similarity renormalization group

Series of unitary transformations on the Hamiltonian that decouple high- and lowmomentum parts of the interaction

$$\frac{dH_s}{ds} = [[T, H_s], H_s] \qquad \lambda = s^{-1}$$

- Makes the many-body problem more tractable
- Induces higher-order terms into the Hamiltonian

No induced terms included!

Use the same flow equation (with the same generator):

$$\frac{dO_s}{ds} = [[T, H_s], O_s]$$

Use the same flow equation (with the same generator):

$$\frac{dO_s}{ds} = [[T, H_s], O_s]$$
 OR Directly calculate the transformation:

$$U_s = \sum_{\alpha} |\Psi_{\alpha}(s)\rangle \langle \Psi_{\alpha}(0)|$$

Hamiltonian eigenvector **before** and **after** transformation

Use the same flow equation (with the same generator):

$$\frac{dO_s}{ds} = [[T, H_s], O_s]$$
 OR Directly calculate the transformation:

$$U_s = \sum_{\alpha} |\Psi_{\alpha}(s)\rangle \langle \Psi_{\alpha}(0)|$$

Hamiltonian eigenvector before and after transformation

And apply via a matrix product: $O_s = U_s O_{s=0} U_s^{\dagger}$

A look in harmonic oscillator space

MS, Sofia Quaglioni, Calvin Johnson, Eric Jurgenson, Petr Navrátil., Phys. Rev. C **90**, 011301(R) (2014)

What about convergence?

Faster convergence?

Faster convergence? Probably not.

Total photo-absorption cross-section of ⁴He

Non-scalar operator evolution:

$$O_s^{JT} = U_s^i O_{s=0}^{JT} U_s^{f\dagger}$$

Requires the unitary transformation from both the initial and final states.

Our goal is to expand this work to larger nuclei and to evolve additional operators.

- ⁶Li rms radius On the poster!
- ⁶He rms radius Very slow convergence

More work for three-body evolution:

- Applying in larger nuclei
- Non-scalar operators

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Support came from the US DOE/SC/NP (Work Proposal SCW1158), US Department of Energy Grants No. DE-FG02-96ER40985 and No. DE-FC02-07ER41457, and the Natural Sciences and Engineering Research Council of Canada (NSERC) Grant No. 401945-2011. TRIUMF receives funding through the National Research Council Canada. Computing support came from the LLNL institutional Computing Grand Challenge program.

Thank You!