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Part I:  Progress on the BIGSTICK shell model code  
  + W. Erich Ormand (LLNL), Ken McElvain (UC Berkeley), Hongzhang Shan (LBL) 

Uses “factorization” algorithm:  Johnson, Ormand, and Krastev,  

Comp. Phys. Comm. 184, 2761(2013) 

Arbitrary single-particle radial waveforms 
Allows local or nonlocal two-body interaction 
Three-body forces implemented and validated 
Applies to both nuclear and atomic cases 

Many-fermion code: 2nd generation after REDSTICK code 
(started in Baton Rouge, La.) 

Runs on both desktop and parallel machines 
--can run at least dimension 200-400M+ on desktop 
--has done dimension 2 billion+ on supercomputers 

45 kilolines of code 
Fortran 90 + MPI + OpenMP 



WHY	
  BIGSTICK?	
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Comparison of nonzero matrix storage with factorization 
7Li 
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   3	
  Tb	
  

(loop over spectators) 
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What’s new with BIGSTICK? 

Lanczos vectors now broken up and distributed – can go to much  
larger model spaces (CWJ + K. McElvain, Berkeley) 
 
Improved reorthogonalization across MPI nodes – much faster now 
(K. McElvain) 

Next steps: 
 
Continue pushing performance—plan to go to dim = 9 billion by summer 
Improve 3-body force capabilities, will install 4-body 
Beyond Lanczos—install LOBPCG or similar algorithm 
 
Science applications: dark matter cross-sections, transition matrix  
elements 



Will do 
shell  
model 
4 food 
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Part II: Transitions and the Brink-Axel hypothesis 
 + Michael K. G. Kruse (LLNL), W. Erich Ormand (LLNL), and Micah Schuster (SDSU)  

Brink-Axel hypothesis (D. Brink, D. Phil. thesis, Oxford University  
(unpublished), 1955; P. Axel, Phys. Rev. 126, 671 (1962)):  
If the ground state has a giant dipole resonance (GDR), then excited states  
should have GDR  
        and 
because the GDR is a collective proton-versus-neutrons oscillations,  
the GDR should be insensitive to the initial state. 
 

“Transition strength function” 

Brink-Axel:     “S(Ei,Ex) independent of Ei”   

Electric	
  dipole	
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Kruse, Ormand, and Johnson: arXiv:1502:03464 

10B E1 response 

Electric	
  dipole	
  



BE1 strength with increasing basis size 

Strength	
  distribuOon	
  
shape	
  is	
  robust	
  in	
  
Nmax.	
  
	
  
Slowly	
  moves	
  down	
  in	
  
energy	
  as	
  a	
  funcOon	
  of	
  
Nmax.	
  
	
  
How	
  to	
  extrapolate	
  
this	
  distribuOon?	
  
	
  
Perhaps	
  it	
  is	
  best	
  to	
  
extrapolate	
  centroids?	
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Kruse, Ormand, and Johnson: arXiv:1502:03464 
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Brink-Axel:     “S(Ei,Ex) independent of Ei”   
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Is this true in general? What 
if you look at more states?  

Is this true for other 
operators? * 

* Some evidence to the contrary (with Gamow-Teller operator):  
Frazier, Brown, Millener, and Zelevinsky, Phys. Lett B 414, 7 (1997); 
Misch, Fuller, and Brown, PRC 90, 065808 (2014) 
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Some preliminary work by Micah Schuster: 
phenomenological calculations in sd-shell where 
we can compute hundreds of initial states 

Took energy bins of initial states, computed strength functions,  
and computed average strength function + fluctuations about average 
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Took energy bins of  
initial states,  
computed strength  
functions, and  
computed average  
strength function  
+ fluctuations  
about average 

24Al with isovector M1 

Average  
strength function 

1 std. dev. fluctuation 
about average 
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Took energy bins of  
initial states,  
computed strength  
functions, and  
computed average  
strength function  
+ fluctuations  
about average 

24Al with isovector M1 

Average  
strength function 

1 std. dev. fluctuation 
about average 
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Took energy bins of  
initial states,  
computed strength  
functions, and  
computed average  
strength function  
+ fluctuations  
about average 

24Al with isovector M1 
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23Mg with isovector M1 

Looks like large 
fluctuations 
about the 

average; can we 
characterize /
quantify this? 
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Looks like large 
fluctuations 
about the 

average; can we 
characterize /
quantify this? 

The total strength  
(or non-energy-weighted sum rule) 
can be computed as a simple expectation value 
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The total strength (or non-energy-weighted sum rule) 
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The fluctuations 
about the 

average are also 
easy to represent 
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Furthermore, the 
smooth secular 

behavior is easily 
understood through 
spectral distribution 

theory  
of J. B. French et al 

Average expectation value is just a trace! 
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Furthermore, the 
smooth secular 

behavior is easily 
understood through 
spectral distribution 

theory  
of J. B. French et al 

Average expectation value is just a trace! 

(Linear) energy dependence is also a trace! 

Slope is given by  < O H > - < O > < H >  
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Furthermore, the 
smooth secular 

behavior is easily 
understood through 
spectral distribution 

theory  
of J. B. French et al 

Average expectation value is just a trace! 

(Linear) energy dependence is also a trace! 

From this we can derive the secular 
behavior of expectation values 
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Furthermore, the 
smooth secular 

behavior is easily 
understood through 
spectral distribution 

theory  
of J. B. French et al 
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What we do learn 
from this? 
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What we do learn 
from this? 

The generalized Brink-Axel hypothesis  
(for arbitrary operators) is wrong! 
-- total strength evolves with initial (parent) energy 
-- significant fluctuations even for nearby parent states 
 

We can understand this through spectral  
distribution theory,  
     that is, 
traces of operators (weighted by the energy); 
 
A lack of energy dependence can occur only  
if 
 
    < O H > - < O > < H > = 0 
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Part III: ab initio Gamow-Teller transitions 

•  Gamow-Teller important for weak physics, astrophysics 
•  Avoids dependence on radial wavefunctions (at lowest order);  
mostly SU(4) irreps; Ikeda sum rule strong constraint 
•  Consistent quenching of coupling—exchange currents, or what? 
•  What about 0-neutrino double-beta decay? 

Anomalously long 14C half-life (Maris, Vary, Navratil, Ormand, Nam, Dean)  
Phys. Rev. Lett. 106, 202502 (2011): ‘accidental’ cancellation of  
matrix elements  driven by 3-body force 

Exchange current corrections from EFT (quenching of about 0.8): 
S. Vaintraub, N. Barnea, and D. Gazit, Phys. Rev. C 79, 065501 (2009); 
J. Menendez, D. Gazit, and A. Schwenk, Phys. Rev. Lett 107, 062501 (2011) 
 

Two recent highlights: 
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6He è 6Li 

Preliminary!

 Chiral	
  2-­‐body	
  forces	
  SRG	
  evolved	
  to	
  λ=2	
  fm-­‐1)	
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7He è 7Li 

Preliminary!

 (Run	
  on	
  desktop	
  machine	
  with	
  BIGSTICK)	
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7He è 7Li 

Preliminary!
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8He è 8Li 

Preliminary!
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Part III: ab initio Gamow-Teller transitions 

Need to run higher Nmax (on supercomputers) but … 

Despite being a “simple”  operator,  transition matrix elements  
of Gamow-Teller ( στ  ) do not have simple behavior: 
•  Some transitions quickly converge as we go up in Nmax, others not 
•  Should be investigated by doing L-S/SU(4) decomposition  
•  Effect of 3-body forces likely important 
•  More work on chiral EFT exchange forces should be done 
•  Likely strong implications for 0ν-ββ matrix elements… 
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Summary and looking forward



We live in a dynamic universe…. 
can’t understand it without understanding transitions! 
 
-- We (and others) can now compute ab initio giant resonances  
            in agreement with expt 
-- Some evidence for Brink hypothesis for GDRs, not so for other transitions 
-- Gamow-Teller transitions are “simple” yet behavior is not trivial 
      (i.e., some transitions converge quickly with Nmax, others not) 
 
As the ab initio community moves forward, we collectively are developing 
-- “consistently evolved” operators (e.g., Micah Schuster’s poster) 
-- EFT-derived exchange current corrections (e.g. R. Wiringa, S. Pastore) 
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Summary and looking forward



But getting             calculations = experiment                 is not enough!  
 
Can we understand systematic behavior?  
    for example, systematics of GDRs, 
                           Brink hypothesis 
 
Some tools: 
      spectral distribution theory (moment methods) à Brink hypothesis 
                                                                                          à sum rules 
 
     decomposition into irreps (e.g., SU(4) irreps for Gamow-Teller) 
 

    “More work to be done!”




