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Nuclear forces in exotic nuclei 
Nucleon interactions are very 
complex and difficult to handle 

Symmetric matter: 
   N ≈ Z 

Neutron-rich matter (N � Z): 
   - Neutron star matter  EoS 
   - Symmetry energy 

Tensor force (p-n)& Driplines'of'nitrogen'and'fluorine'isotopes&
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Three-nucleon 
Force (3NF)&

Carlo&Barbieri&–&5/11&

Change of regime from 
stable to dripline isotopes !*

[A. Carbone et al.,  Phy.s Rev. C 88, 044302&&(2013)]"

SYMMETRIC NUCLEAR MATTER WITH CHIRAL THREE- . . . PHYSICAL REVIEW C 88, 044302 (2013)

Note that the N2LO potential yields a poorer reproduction of
the phase shifts for selected partial waves compared to the
richer N3LO force.

Most nuclear matter calculations using chiral forces have
been performed within a perturbative framework starting
from evolved interactions. In Ref. [43], convergence has
been analyzed order by order in many-body perturbation
theory. Results have been obtained up to third order, including
particle-particle and hole-hole propagation [43]. In principle,
the equation of state should be independent of the evolution
scales in the 2NF and the 3NF. Moreover, in the perturbative
regime, results should only be mildly dependent on the order in
perturbation theory. Our nonperturbative calculations include
contributions to all orders and hence are neither limited to the
perturbative regime nor dependent on the order of perturbation
theory. If the diagrammatic summation is complete, it should
lead to scale-invariant results.

We test this hypothesis by performing calculations at
different evolution scales, in both the two- and the three-
body sectors. We evolve the 2NF using a free-space SRG
transformation [37]. The transformation renormalizes the 2NF,
suppressing off-diagonal matrix elements and giving rise to
a universal low-momentum interaction. The SRG evolution
flow also induces many-body forces, which should be taken
into account to keep the calculation complete. Following the
philosophy of Ref. [43], we incorporate the effect of induced
forces through the refitting of the cD and cE LECs to the 3H
binding energy and 4He matter radius. We use the values given
in Table I of [43]. Note that in this process we assume that
the operatorial and momentum structures of the original and
the induced 3NFs are the same. Furthermore, we explore the
dependence of our results on the 3NF cutoff, !3NF, appearing
in the density-dependent 2NF. A more complete calculation
would require running a SRG evolution including the 3NF [41].

We present the results of this exploration in Fig. 8.
Numerical calculations obtained using the SRG on the 2NF
have a saturation point which is much closer to the empirical
value when compared to the original force. Moreover, if
the 2NF has been SRG-evolved, the results are somewhat
independent of the cutoff. Overall, one can say that the
more the 2NF is evolved downward, the more attractive the
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FIG. 8. (Color online) SCGF results for the energy per nucleon
of SNM as a function of the density at a temperature of T = 5 MeV.
Different lines represent different choices of cutoffs for the 2NF, λ,
and the 3NF, !3NF.

saturation curve becomes. This effect is a consequence of the
shift in importance between the 2NF and the induced 3NF
associated with the SRG. There is also a small dependence on
!3NF, but the differences agree well with those presented in
Ref. [43].

The large differences between the results obtained with
evolved and unevolved forces is striking. If correlations and
induced many-body forces had been fully taken into account,
one would have expected a much closer agreement between
the results. This difference might indicate that the assumptions
associated with induced 3NFs are not necessarily robust.
Missing induced three-body forces, which up to now have
not been included in SNM calculations, could resolve this
discrepancy. Alternatively, the difference is also an indication
of missing many-body effects such as, for instance, higher
orders in the treatment of the 3NF. It must be emphasized that
the present way to proceed when applying SRG evolution
in infinite matter should be improved by carrying out the
evolution on a full Hamiltonian with both two- and three-body
forces. Recently, improvements toward the solution of this
problem have been presented for calculations in pure neutron
matter [41], where a full Hamiltonian has been consistently
evolved. All in all, our results seem to contradict the idea that
induced 3NFs can be treated simply in nuclear matter.

In terms of evolved interactions, our nonperturbative
calculations can be used to check whether the perturbative
regime is actually reached. To this end, we compare, in
Fig. 9, our results to the perturbative calculations presented
in Ref. [43]. The BHF and SCGF calculations have been
performed with a SRG-evolved 2NF and a 3NF with the same
cut-offs, λ/!3NF = 2.0/2.0 fm−1. Whereas the Brueckner
results have been obtained with a zero-temperature code, the
SCGF calculations have been extrapolated to zero temperature
by means of a simple procedure. At low temperatures,
the Sommerfeld expansion indicates that the effect of tem-
perature is quadratic and is the same, but with opposite sign,
for the energy and the free energy [47]. Consequently, the
semi-sum of both thermodynamical potentials is an estimate
of the zero-temperature energy. We obtain an extremely
good agreement between both many-body approaches and
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FIG. 9. (Color online) Comparison of results for the energy per
nucleon of SNM obtained with different approaches using the same
SRG-evolved 2NF and a 3NF. Circles correspond to extrapolated
SCGF results, whereas squares are BHF calculations at T = 0 MeV.
Diamonds correspond to the results of Hebeler et al. [43].
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One-body Green’s function (or propagator) describes the motion of quasi- 
particles and holes: 
 
 
 
 
 …this contains all the structure information probed by nucleon transfer 
(spectral&funcMon): 

2

15]. The method has later been applied to atoms and
molecules [12, 16] and recently to 56Ni [17] and 48Ca [18].
The ab initio results of Ref. [18] are in good agreement
with (e, e′p) data for spectroscopic factors from Ref. [19]
and also show that the configuration space needed for the
incorporation of long-range (surface) correlations is much
larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

〈ΨA
0 |cα|Ψ
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where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n 〉, |ΨA−1
k 〉 are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
〈ΨA+1

n |c†α|Ψ
A
0 〉, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 〉 ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 〉
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ%
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ%(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ%(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ%(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves ($, j, τ) are
decoupled, where $,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ%(x,x′;E) =
∑

&jmjτ

I&jmj
(Ω,σ)

×

[

∑

na,nb

Rna&(r)Σ
%
ab(E)Rnb&(r

′)

]

(I&jmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, $, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rn&(r),
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Example of spectral function 56Ni 



Concept of correlations 
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Approaches in GF theory 
Truncation 
scheme:&

Dyson formulation 
(closed shells)&

Gorkov formulation 
(semi-magic)&

1st order:& Hartree-Fock& HF-Bogolioubov&

2nd order:& 2nd order& 2nd order (w/ pairing)&

.&.&.&& .&.&.&

3rd and all-orders 
sums, 
P-V coupling:&

ADC(3) 
FRPA 
etc…&

G-ADC(3) 
 …work in progress 
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[V.+Somà,'T.'Duguet,'CB,'Pys.'Rev.'C84,'046317'(2011)']'

Gorkov self-energy up to 2nd order 



Gorkov self-energy up to 2nd order 
V.&Somà,&CB,&T.&Duguet,&,&Phys.&Rev.&C&89,&024323&(2014)&
V.&Somà,&CB,&T.&Duguet,&Phys.&Rev.&C&87,&011303R&(2013)&
V.&Somà,&T.&Duguet,&CB,&Phys.&Rev.&C&84,&064317&(2011)&&1st&order&➟&energy#independent&&

&&&&self#energy&

2nd&order&➟&energy#dependent&self#energy&



The FRPA Method in Two Words 

Carlo&Barbieri&–&17/11&

Particle vibration coupling is the main cause driving the distribution of 
particle strength—on both sides of the Fermi surface…�

n� p�

≡&par7cle& ≡&hole&

…these modes are all resummed 
exactly and to all orders in a  

ab-initio many-body expansion.&

“Extended”&

Hartree&Fock&

R(2p1h) Σ!(ω) = R(2h1p) 

• A complete expansion requires all 
types of particle-vibration coupling 

• The Self-energy Σ!(ω)�yields both 
single-particle states and scattering 

CB et al.,  
Phys. Rev. C63, 034313 (2001) 
Phys. Rev. A76, 052503 (2007) 
Phys. Rev. C79, 064313 (2009) 



Ab-initio Nuclear Computation & BcDor code  
BoccaDorata code: 
(C. Barbieri  2006-14 
 V. Somà      2011-14 
A. Cipollone 2012-13) 

Code history: 

-   Provides a C++ class library for handling many-body 
propagators (≈40,000  lines, OpenMPI based). 

-   Allows to solve for nuclear spectral functions, many-body 
propagators, RPA responses, coupled cluster equations and 
effective interaction/charges for the shell model. 

new Gorkov formalism for  
open-shell nuclei (at 2nd order)&

Three-nucleon forces (≈50 cores, 
35 Gb but on the rise…)&
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2015&

core functions and FRPA&

Coupled clusters equations&
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…  applications  … &
Carlo&Barbieri&–&14/11&

shell model charges-interactions (lowest order)&

massively parallel…)&
Gorkov at 3rd order (will become&



Quenching of absolute spectroscopic factors�

Overall quenching of spectroscopic 
factors& is driven by: 
SRC          !  ~10% 
part-vibr. coupling ! dominant 
“shell-model“    ! in open shell 
*

[CB,&Phys.*Rev.*Le<.&103,&202520&(2009)]*
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Reaching medium mass and 
neutron rich isotopes 

" Degenerate system (open shells, deformations…) 

" Hamiltoninan, including three nucleon forces&

88Ni !
"

2014"



Convergence of s.p. spectra w.r.t. SRG 
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FIG. 6. (Color online) One-neutron separation energies with dominant spectroscopic factors versus neutron ESPEs in
16,20,22,24O. Each level is displayed for λ = 1.88 (open symbols), 2.00 (crosses), and 2.24 fm−1 (filled symbols). Results
are displayed for both HFB and second-order G-SCGF calculations. Panel (a): one- and two-body operators are retained in
the (initial and) transformed Hamiltonians. Panel (b): one-, two-, and three-body operators are retained in the initial and
transformed Hamiltonians.

tion between induced 4N interactions from the initial 2N
and 3N interactions, as discussed in Refs. [51, 52, 67, 68].
In order to verify that the pattern just discussed is not

specific to G-SCGF but reflects a generic aspect of the
many-body problem, we further compare in panel (b) of
Fig. 5 with MR-IM-SRG(2) calculations for the Hamil-
tonian containing 2N+3N forces. At the current level
of implementation, the MR-IM-SRG includes many-body
terms beyond G-SCGF, and allows an even more signif-
icant reduction of the scale dependence, while also ben-
efitting from the cancellation of induced 4N terms men-
tioned above. The residual running ranges from 50 keV
in 14O to 400 keV in 24O for λ ∈ [1.88, 2.24] fm−1. The
better many-body convergence of MR-IM-SRG(2) is also
reflected in the additional absolute binding [38, 53]. A
third-order G-SCGF truncation scheme will provide the
missing binding energy and will allow for a further atten-
uation of the scale dependence, as shown in Ref. [65] for
closed-shell oxygen isotopes.

C. Nuclear shell energies

First, we compare one-nucleon separation energies E±
k

with absolute ESPEs ecentp in 16,20,22,24O. For each spin

and parity, we consider the separation energy of the state
with the dominant strength13. As in the previous sec-
tion, we perform HFB and G-SCGF calculations using
the SRG-evolved 2N and 2N+3NHamiltonians, and com-
pile results from all four variants in Fig. 6, covering en-
ergies from −48MeV to +10MeV. Let us now list the
main lessons one can learn from these results.

• Combining panels (a) and (b), one can appreciate
the significant reduction of the scale dependence
of all one-nucleon separation energies obtained by
keeping 3N operators in the Hamiltonian and/or by
going from HFB to second-order G-SCGF.

• The running of ESPEs is qualitatively different
and quantitatively larger than for observable one-
nucleon separation energies. This is particularly
clear for the 2N+3N Hamiltonian: While the av-
erage spread of all displayed separation energies is
equal to 0.2MeV for λ ∈ [1.88, 2.24] fm−1, the av-
erage spread of ESPEs is equal to 1.1MeV. The

13 The two visible 5/2+ levels in 20O actually correspond to two dif-
ferent states with similar strength. The fact that two states with
equal strength appear near the Fermi energy is characteristic of
the superfluid and open-shell nature of 20O.

Cutoff dependence is reduces, indicating good convergence of many-body 
truncation and many-body forces&
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$   d3/2 raised by genuine 3NF 

$   cf. microscopic shell model [Otsuka 
et al, PRL105, 032501 (2010).]&

Results for the N-O-F chains 
 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 

and   arXiv:1412.0491 [nucl-th] (2014) 



$ 3NF crucial for reproducing binding energies and driplines around oxygen 
 
$   cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]&

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)&

 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 
and   arXiv:1412.0491 [nucl-th] (2014) 

Results for the N-O-F chains 
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$ Single particle spectra slightly diluted and 
 
$   systematic underestimation of radii&

 A. Cipollone, CB, P. Navrátil, arXiv:1412.0491 [nucl-th] (2014) 
Results for the oxygen chain 
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-  sd-pf separation is 
overestimated even with 
leading order N2LO 3NF 

-  Correct increase of  
p3/2-f7/2 splitting (see 
Zuker 2003) 

 Neutron spectral distributions for 48Ca and 56Ni:&

The sd-pf shell gap 

+3NFs 
(NNLO)&

TABLE 1. Predicted matter radii (in fm) for 16O and 44Ca form SRG evolved 2N-
only interactions and by including induced and full 3NF. Experiment are charge radii.

2NF only 2+3NF(ind.) 2+3NF(full) Experiment
16O: 2.10 2. 41 2.38 2.718±0.210 [19]

44Ca: 2.48 2.93 2.94 3.520±0.005 [20]

v(3NF)
�⇥ ,⌅⇤ = ⇤

µ ⌥

1
2�i

Z

C⇤
d w�⇥µ,⌅⇤⌥ g⌥µ( ) . (2)

These definition extend the normal ordering approach of Ref. [11] by contracting with
fully correlated propagators, as opposed to a mean-field reference state. The matrix
elements u(3NF)

�⇥ and v(3NF)
�⇥ ,⌅⇤ are then added to the existing 1N and 2N forces with

the caveat that only interaction irreducible diagrams are retained to ensure the correct
symmetry factors in the diagrammatic expansion [15].

After obtaining the sp propagator g( ) the total binding energy can be calculated as
usual through the Koltun sum rule which—due the the presence of 3NF—acquires the
corrected form

EA
0 = ⇤

� ⇥

1
4�i

Z

C⇤
d 

⇥
u�⇥ + ⇤�⇥

⇤
g⇥�( ) � 1

2
⌅⇥A

0 |Ŵ |⇥A
0 ⇧ . (3)

Eq. (3) is still an exact equation. However, it requires to evaluate the expectation value
of the 3NF part of the hamiltonian < Ŵ > which is calculated here to first order in Ŵ .

Calculations for closed sub-shell oxygen isotopes were performed for the chiral N3LO
2NF [16] and N2LO 3NF [17] with the cutoff of 400 MeV as introduced in Ref. [11].
These were evolved to a cutoff ⇧ = 1.88 fm�1 using free-space similarity renormaliza-
tion group (SRG) [18]. We employed large model spaces of up to 12 harmonic oscillator
shells with frequency h̄ =20 MeV. Results for the induced 3NF are obtained from the
SRG evolution of the original 2NF only and are indicated by red squares in Fig. 1. These
are to be considered analogous to predictions of the sole N3LO 2NF and systematically
under bind the oxygen isotopes. Adding full 3NFs, that include in particular the two-
pion exchange Fujita-Miyazawa contribution, reproduces experimental binding energies
throughout the isotopic chain and the location of the neutron dripline. Table 1 shows that
although SRG evolved 2NFs alone underestimate the nuclear radii, results improve with
the inclusion of 3NFs.

Gorkov formalism for open-shell isotopes. The Gorkov’s approach handles intrinsic
degeneracies of open shell systems by allowing the breaking of particle number sym-
metry. One considers the grand canonical hamiltonian �int = Hint � µpẐ � µnN̂ and
constrains expectation values of proton and neutron number operators to the expected
values. This allows defining a superfluid state which already accounts for pairing corre-
lation and can be used as reference for Green’s function diagrammatic expansion. The
formalism for Gorkov self-consistent Green’s function (Gorkov-SCGF) theory up to sec-
ond order in the self-energy has been worked out in full in Ref. [12], for 2N interactions
only. First results are reported in [13].

CB&et*al.,&arXiv:1211.3315&[nucl#th]&
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Ab-initio calculations explain the Z/N dependence but the 
effect is much lower than suggested by direct knockout 
 
Effects of continuum become important at the driplines 

Spectroscopic factor are strongly 
correlated to p-h gaps: 

Z/N asymmetry dependence of SFs - Theory 

QUASIPARTICLE AND QUASIHOLE STATES OF NUCLEI . . . PHYSICAL REVIEW C 79, 064313 (2009)

This term automatically corrects for the zero point motion in
the oscillator basis but it depends explicitly on the number
of particles. In this work, we are interested in transitions to
states with different numbers of nucleons (A ± 1) and aim at
computing directly the differences between the total energies.
Therefore, the above correction should not be employed in
the present case. One may note that the separation of the
center-of-mass motion is an issue related to the choice made for
the model space, rather than the many-body method itself. For
example, expressing the propagators directly in momentum
space would allow an exact separation. In this situation, the
transformation between the center-of-mass and laboratory
frames for systems with a nucleon plus a A-nucleons [or
(A-1)-nucleons] core would also be simple.

A. Choice of κM

Equation (16) introduces a single parameter (κM ) in our
calculations. The reason for this modification is that the spec-
troscopic factors of the valence orbits are strongly sensitive to
the particle-hole gap. This sensitivity is to be expected because
collective modes in the 56Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower excitation
energies and higher probability of admixture with valence
orbits. To extract meaningful predictions for spectroscopic
factors it is therefore necessary to constrain the Fermi gaps
for protons and neutrons to their experimental values.

To investigate this dependency we repeated our calculations
for values of κM in the range 0.4–0.7 MeV. Figure 3 shows
the resulting neutron spectroscopic factors for the valence
p3/2 quasiparticle and f7/2 quasihole. These are plotted
as a function of the calculated particle-hole gap "Eph =
ε+

1p3/2,n=0 − ε−
0f7/2,k=0. The results correspond to model spaces

of different dimensions (eight or ten oscillator shells) and
oscillator frequencies (h̄$ = 10 or 18 MeV). The gap "Eph
increases with κM but the dependence on the model space is
weak. We notice that, once the experimental value of "Eph
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FIG. 3. (Color online) Dependence of neutron spectroscopic
factors (given as a fraction of the independent-particle model value)
for the 1p3/2 and the 0f7/2 valence orbits with respect to the ph gap
"Eph. For each model space, different points correspond to different
choices of κM in the range 0.4–0.7 MeV.

is reproduced, the spectroscopic factors are well defined and
found to be converged with respect to the given model space.

All results reported below were obtained with a fixed value
of κM = 0.57 MeV. In the Nmax = 9 model space and an
oscillator energy h̄$ = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliable to within
1–2% of the independent-particle model value.

B. Convergence with respect to the model space

Figure 4 shows the dependence of the neutron 1p3/2 particle
and the 0f7/2 hole energies with respect to the oscillator
frequency and the size of the model space. As can be seen
from this figure, the single-particle energies for these two
single-particle states tend to stabilize around eight to ten
major shells. This finding concords both with coupled-cluster
calculations that employ a G matrix as effective interaction
for 16O, see Refs. [71] and [70], and with analogous Green’s
functions studies [31]. It remains, however, to make an
extensive comparison between coupled-cluster theory and the
Green’s functions approach to find an optimal size of the
model space with a given nucleon-nucleon interaction. Finally,
we plot in Fig. 5 the neutron valence single-particle energies
for all the single-particle states in the 1p0f shell. The latter
results were obtained with our largest model space, ten major
shells with Nmax = 9 and the single-particle orbital momentum
l ! 7. As can be seen from this figure, there is still, although
weak, a dependence upon the oscillator parameter. To perform
calculations beyond ten major shells will require nontrivial
extensions of our codes.
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FIG. 4. (Color online) Dependence of the neutron 1p3/2 particle
energy and the 0f7/2 hole energy with respect to the oscillator
frequency and the size of the model space.
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overlap ratios at larger radii comes from the fact that the
p1=2 proton orbital become more and more bound as more
neutrons are added to 16O. For 14O the p1=2 proton is less
bound with respect to 16O, resulting in a bend upward. As
we approach the neutron dripline, the one-neutron emis-
sion thresholds for the oxygen isotopes and their neighbor-
ing nitrogen isotopes get closer to the scattering threshold.
Clearly, the tail of the wave functions will play a more
important role as the outermost neutrons get closer to the
scattering threshold. It is exactly this effect we observe in
our calculations of the SFs for proton removal. Using a HF
basis of purely harmonic oscillator wave functions, the
density in the interior region of the nucleus is overesti-
mated, while the density is shifted towards the tail when
using a basis with correct asymptotic behavior. One should
note that the nitrogen isotopes for a given neutron number
are more loosely bound than their corresponding oxygen
isotones, and this is the essential reason for the reduction.
For 28O and 27N, no experimental values are available but
if 28O exists it will be very loosely bound and we may
assume that 27N is unbound.

Finally, we show in Fig. 3 the SFs of the proton and
neutron states closest to the Fermi surface (for protons
the p1=2-state), as a function of the difference between the
computed proton and neutron separation energies. The
results here agree excellently with similar interpretations
made in Refs. [9,10]. One sees clearly an enhancement of
correlations for the strongly bound, deficient nucleon
species with increasing asymmetry.

In conclusion, we have found a large quenching of the
spectroscopic factors for the deeply-bound proton states
near the Fermi surface in the neutron-rich oxygen isotopes.
This can be ascribed mainly to many-body correlations
arising from a proper treatment of neutron scattering states.
These results agree nicely with the mathematical analysis
performed by Michel et al. [19]. This result for the oxygen

isotopes is similar to what has been inferred from neutron
knockout reaction cross sections for deeply-bound neutron
states near the Fermi surface in proton-rich sd-shell nuclei
[9,10]. Clearly, more work is needed to confirm the con-
nection; experiments for proton knockout from oxygen
should be undertaken and many-body calculations for
proton-rich, heavy nuclei need to be carried out.
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FIG. 3 (color online). Plot of calculated SFs as functions of the
difference between the calculated neutron and proton separation
energies. The results are for the single-particle states closest to
the Fermi surface. For protons these are the p1=2 states.
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included all single-particle states spanned by 17 major
oscillator shells.

Figure 1 shows the calculated SFs for removing a proton
in the p1=2 and p3=2 partial waves of 14;16;22;24;28O. We
compare our calculations of the SFs to calculations using
an HF basis built entirely from harmonic oscillator basis
functions (HF-OSC, dashed lines). The results are obtained
with an harmonic oscillator energy @! ¼ 30 MeV. Our
calculations of the SFs depend weakly on the harmonic
oscillator frequency, see, for example, Ref. [12]. The p1=2

and p3=2 proton orbitals are close to the Fermi level. In a
traditional shell-model picture we would therefore expect
SFs close to unity for such states. However, we find a
significant quenching of the SFs due to the coupling-to-
continuum degrees of freedom. The calculations done with
a HF-OSC basis show no significant quenching, and illus-
trate clearly the limitation of the harmonic oscillator basis
representation of weakly bound, neutron-rich nuclei. This
observation agrees also nicely with the analysis of Michel
et al. [19]. There, the authors demonstrate that the energy
dependence of SFs due to an opening of a reaction channel
can only be described properly in shell-model calculations
if correlations involving scattering states are treated
properly.

In our calculations the closed-shell oxygen isotopes
14;16;22;24;28O are all bound with respect to neutron emission
(for this particular N3LO interaction with cutoff ! ¼
500 MeV). In particular, we get 28O bound by 3.67 MeV
with respect to one-neutron emission. However, starting
from anN3LO interaction with a cutoff! ¼ 600 MeV, we
get 28O unbound with respect to four-neutron emission and
24O, as seen in Ref. [20]. To judge the theoretical basis for

the demonstrated continuum effect, we also computed SFs
for the proton removal from 14;16;22O using the ! ¼
600 MeV N3LO interaction model. We found similar re-
sults as for the ! ¼ 500 MeV N3LO interaction model,
and conclude that the theoretical uncertainties related to
short-range correlations do not seem to impair the results
reported here.
To further understand the role of correlations beyond

mean-field we compared the SF for p1=2 proton removal
from 24O for three different approximations to jAi and
jA" 1i. To get bound solutions for 24O in simpler calcu-
lation schemes, we softened the N3LO interaction through
similarity renormalization group (SRG) methods [21]. For
each approximation we considered three values of the SRG
flow parameter ! ¼ 3:2, 3.4, 3:6 fm"1. First, in the crudest
approximation, using a mean-field HF solution for jAi and
jA" 1i, the SFs are by definition equal to unity. Secondly,
we used a HF solution for jAi while jA" 1i was approxi-
mated by one-hole and two-hole-one-particle excitations
on the HF ground state jAi. In this case we observed about
15%–20% reduction in the SFs. Finally, our EOM-CC
approach in Eq. (2), gave a reduction of 20%–25% over
the range of ! considered. This clearly shows the impor-
tance of correlations beyond the mean-field. Varying the
SRG flow parameter from 3:2 fm"1 to 3:6 fm"1 we found
that the SFs varied from 0.79 to 0.75, illustrating the role of
short-range correlations.
The shape of the calculated overlap functions reveals

more information. In order to probe the sensitivity of the
tail of the overlap functions as we move towards 28O, we
compute the ratios of the absolute square of the radial
overlap functions to the jh15Njaljj16Oij2 radial overlap
function. These results are shown in Fig. 2 for the p1=2

proton state (the p3=2 proton state shows a very similar
pattern). A notable reduction of these norms towards more
neutron-rich nuclei is seen. The downward dip of the
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factors as the neutron dripline is approached. For comparison,
we show calculations of spectroscopic factors using a HF basis
built entirely from harmonic oscillator basis functions
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We present microscopic coupled-cluster calculations of the spectroscopic factors for proton removal

from the closed-shell oxygen isotopes 14;16;22;24;28O with a chiral nucleon-nucleon interaction at next-to-

next-to-next-to-leading order. We include coupling-to-continuum degrees of freedom by using a Hartree-

Fock basis built from a Woods-Saxon single-particle basis. This basis treats bound and continuum states

on an equal footing. We find a significant quenching of spectroscopic factors in the neutron-rich oxygen

isotopes, pointing to enhanced many-body correlations induced by strong coupling to the scattering

continuum above the neutron emission thresholds.
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The concept of independent particle motion, and mean-
field approaches based thereupon, has played and contin-
ues to play a fundamental role in studies of quantum
mechanical many-particle systems. From a theoretical
standpoint, a single-particle (or quasiparticle) picture of
states near the Fermi surface offers a good starting point for
studies of systems with many interacting particles. For
example, the success of the nuclear shell model rests on
the assumption that the wave functions used in nuclear
structure studies can be approximated by Slater determi-
nants built on various single-particle states. The nuclear
shell model assumes thus that protons and neutrons move
as independent particles with given quantum numbers,
subject to a mean field generated by all other nucleons.
Deviations from such a picture have been interpreted as a
possible measure of correlations. Indeed, correlations are
expected to reveal important features of both the structure
and the dynamics of a many-particle system beyond the
mean-field picture.

In a field like nuclear physics, where the average density
in nuclei is high and the interaction between nucleons is
strong, correlations beyond the independent-particle mo-
tion are expected to play an important role in spectroscopic
observables. Experimental programs in low-energy nuclear
physics aim at extracting information at the limits of
stability of nuclear matter. Correlations which arise when
moving towards either the proton or the neutron dripline
should then provide us with a better understanding of shell
structure and single-particle properties of nuclei. So-called
magic nuclei are particularly important for a fundamental
understanding of single-particle states outside shell clo-
sures, with wide-ranging consequences spanning from our
basic understanding of nuclear structure to the synthesis of
the elements [1,2]. Unfortunately, the correlations in
many-particle systems are very difficult to quantify

experimentally and to interpret theoretically. There are
rather few observables from which clear information on
correlations beyond an independent particle motion in a
nuclear many-body environment can be extracted.
A quantity which offers the possibility to study devia-

tions from a single-particle picture, and thereby provide
information on correlations, is the spectroscopic factor
(SF). From a theoretical point of view they quantify what
fraction of the full wave function can be interpreted as an
independent single-particle or single-hole state on top of a
correlated state, normally chosen to be a closed-shell nu-
cleus. Although not being experimentally observable
[3–5], the radial overlap functions, whose norm are the
SFs, are required inputs to theoretical models for nucleon
capture, decay, transfer and knockout reactions. There is
a wealth of experimental data and theoretical analysis
of such reactions for stable nuclei [1,6,7]. Data from
(e, e0p) experiments on stable nuclei [1] indicate that
proton absolute SFs are quenched considerably with re-
spect to the independent-particle model value, with short-
range and tensor correlations assumed to be an important
mechanism. Adding long-range correlations as well from
excitations around the Fermi surface, one arrives at a
quenching of 30%–40%, see, for example, Ref. [8].
Nuclear physics offers therefore a unique possibility,
via studies of quantities like SFs, to extract information
about correlations beyond mean-field in complicated, two-
component, many-particle systems.
Recent data on knockout reactions on nuclei with large

neutron-proton asymmetries indicate that the nucleons of
the deficient species, being more bound, show larger re-
ductions of spectroscopic strength than the less bound
excess species [9,10]. It is the aim of this work to under-
stand which correlations are important when one moves
towards more weakly bound systems. For this, we study the
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fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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FIG. 3 (color online). Radial dependence of (a), (b) the OFs for
WS and microscopic (SCGF) [30] form factors normalized to 1;
(c), (d) the OF difference $ (SCGF#WS).

TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.

RHFB
rms r0 C2Sexp C2Sth Rs C2Sexp C2Sth Rs

Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
14O (d, 3He) 13N 0.00 1=2# 3.03 1.23 1.14(16)(15) 1.55 0.73(10)(10) 1.58(22)(2) 1.58 1.00(14)(1)

3.50 3=2# 2.77 1.12 0.94(19)(7) 1.90 0.49(10)(4) 1.00(20)(1) 1.90 0.53(10)(1)
16O (d, t) 15O 0.00 1=2# 2.91 1.46 0.91(9)(8) 1.54 0.59(6)(5) 0.96(10)(7) 1.73 0.55(6)(4)
16O (d, 3He) 15N [19,20] 0.00 1=2# 2.95 1.46 0.93(9)(9) 1.54 0.60(6)(6) 1.25(12)(5) 1.74 0.72(7)(3)

6.32 3=2# 2.80 1.31 1.83(18)(24) 3.07 0.60(6)(8) 2.24(22)(10) 3.45 0.65(6)(3)
18O (d, 3He) 17N [21] 0.00 1=2# 2.91 1.46 0.92(9)(12) 1.58 0.58(6)(10)
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fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.
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Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
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-  Overlap functions and strengths from GF 

-  Rs independent of asymmetry&

[F. Flavigny et al, PRL110, 122503 (2013)] 

radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
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enlightening discussions and P. Navrátil for providing
evolved two- and three-body interactions relevant to this
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J000051/1.
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FIG. 4 (color online). Reduction factors Rs obtained with (a) a
WS OF and the SLy4 interaction [31], averaged over four
entrance and two exit potentials, and compared to shell-model
calculations performed with the WBT interaction [37] in the
0pþ 2@! valence space; (b) a microscopic (SCGF) form factor
[30]. The detail of error bars is given in text.
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Single nucleon transfer in the oxygen chain 



Mapping Ab-Initio calculation into the  
shell model approach 
Recent works through CCM and IMRSG: &

Calculation of observables: need many-body corrections, to evolve operators,  
           add electroweak currents, ect…&

Bogner&et&al&Phys.&Rev.&LeX.&113,&142501&(2014)&

Jansen&et&al&Phys.&Rev.&LeX.&113,&142502&(2014)& %  works well for spectra&

See&Menendez&,&Stroberg,&Pastore&and&other&talks&today…&

To have a look at the many-body and effects:&

Extract&vibraMon&coupling&form&microscopic&calculaMons…&

CB,&T.&Otsuka,&in&preparaMon&



… = 

= ph?RPA+ ph?RPA+

PT expansion of effective interactions: 

“traditional” MBPT approach 

Effective charges (estimate  form many-body effects): 



but NO self-en insertions = 

= 

PT expansion of effective interactions: 

“upgrade” using SCGF’s spect. funct. 

Effective charges (many-body contributions): 

Dressed (self consistent) propagator: 

2p1h,
FRPA' 2h1p,FRPA'2h1p,FRPA'

2h1p,FRPA'2p1h,
FRPA' 2h1p,FRPA'

… 



Some results – ANi chain in pfg9/2 shell 
Interaction:  NNLO-opt,   AV18 (+Gmatrix)*

Single particle basis: HF*

p1
/2
-p
3/
2

p1
/2
-f5
/2

p3
/2
-p
3/
2

p3
/2
-f5
/2

p3
/2
-f7
/2

f5
/2
-f5
/2

f5
/2
-f7
/2

f7
/2
-f7
/2

g9
/2
-g
9/
2

av
er
ag
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

78Ni

p1
/2
-p
3/
2

p1
/2
-f5
/2

p3
/2
-p
3/
2

p3
/2
-f5
/2

p3
/2
-f7
/2

f5
/2
-f5
/2

f5
/2
-f7
/2

f7
/2
-f7
/2

g9
/2
-g
9/
2

av
er
ag
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

68Ni

p1
/2
-p
3/
2

p1
/2
-f5
/2

p3
/2
-p
3/
2

p3
/2
-f5
/2

p3
/2
-f7
/2

f5
/2
-f5
/2

f5
/2
-f7
/2

f7
/2
-f7
/2

g9
/2
-g
9/
2

av
er
ag
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

56Ni

p1
/2
-p
3/
2

p1
/2
-f5
/2

p3
/2
-p
3/
2

p3
/2
-f5
/2

p3
/2
-f7
/2

f5
/2
-f5
/2

f5
/2
-f7
/2

f7
/2
-f7
/2

g9
/2
-g
9/
2

av
er
ag
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

48Ni

CB,&T.&Otsuka,&in&preparaMon&

Preliminary&

BE(2) charges 



Some results – ANi chain in pfg9/2 shell 
Interaction:  NNLO-opt,   AV18 (+Gmatrix)*

Single particle basis: HF*
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Averaged B(E2) effective 
charges for ANi isotopes. 

Averaged charges'

CB,&T.&Otsuka,&in&preparaMon&

" “predicted” 
charges are 
smaller than usual 
phenomenological 
ones 
 
" NO higher 
order currents 
here -- just the 
many-body 
correction… 

BE(2) charges 



Some results – O and C chains 
Interaction:  N3LO(500) (+Gmatrix) *

Single particle basis: HF or HFB*

" “predicted” 
charges are 
smaller than usual 
phenomenological 
ones 
 
" NO higher 
order currents 
here -- just the 
many-body 
correction… 

BE(2) charges 

Notes on e↵ective charges for the p and sd shells for A⇡10-24 isotopes up to oxygen

C. Barbieri, ⇤ and T. Otsuka
(Dated: December 11, 2013)

[...]

PACS numbers:

I. RESULTS

Table I shows e↵ective charges for the p and sd shells. Calculations are based on a G-matrix interaction derived from
the Entem’s 2N-N3LO potential and where performed in an harmonic oscillator basis with 8 major shells (N

max

=7)
and frequency ~!=16 MeV.

Be10 C10 C22 O14 O16 O20
⌫s1/2-⌫d3/2 : 0.142 0.094 -0.751 0.160 0.128
⌫s1/2-⌫d5/2 : 0.226 0.125 0.261 0.214 0.181
⌫d3/2-⌫d3/2 : 0.278 0.121 0.198 0.082 0.155
⌫d3/2-⌫d5/2 : 0.320 0.137 0.249 0.274 0.214
⌫d5/2-⌫d5/2 : 0.278 0.151 0.294 0.250 0.232

⇡s1/2-⇡d3/2 : 1.131 1.051 0.594 1.105 1.078
⇡s1/2-⇡d5/2 : 1.155 1.094 1.161 1.142 1.134
⇡d3/2-⇡d3/2 : 1.061 1.054 1.441 0.976 1.070
⇡d3/2-⇡d5/2 : 1.141 1.107 1.042 1.091 1.170
⇡d5/2-⇡d5/2 : 1.161 1.077 1.139 1.107 1.099

⌫p1/2-⌫p3/2 : 0.359 0.319 0.344 0.401 0.404
⌫p3/2-⌫p3/2 : 0.315 0.247 0.367 0.316 0.307

⇡p1/2-⇡p3/2 : 1.102 1.134 1.183 1.179 1.198
⇡p3/2-⇡p3/2 : 1.128 1.103 1.075 1.056 1.082

TABLE I: Microscopic e↵ective charges for BE(2) transitions. These are calculated from the ADC(3) expansion for the self-
energy, based on HFB reference states, and configuration inside the p-se space have been projected out. Charges are given for
Baranger’s e↵ective single particle states associated with the HFB states. Result in boldface refer to closed shell isotopes (i.e,
HF references).

II. DETAILS OF CALCULATIONS

We first perform Hartree-Fock (HF) and HF Bogolioubov (HFB) calculations to obtain reference states for each
of the nuclei under consideration. For open-shell isotopes, the HFB accounts for pairing correlations and splits the
most important orbits in the p or sd shell into two fragments, corresponding to states with a nucleon added or
removed to/from the half occupied level. This fragmentation is accounted for when generating the 2p1h and 2h1p
configurations through which the external probe (the quadrupole operator in the present case) interacts with a nucleon.
The many-body response to the external probe is calculated by solving the self-energy in the ADC(3) approximation
and contracting the external operator to each side of the self-energy [better explanations and equations will follow].
This includes diagrams describing the interaction with the external field mediated by sums of ring (ph) diagrams but
it also include other relevant contributions in the pp and hh channels.

⇤
Electronic address: c.barbieri@surrey.ac.uk
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�  What to did we learn about realistic chiral forces from ab-initio calculations ? 

$   Leading order 3NF are crucial to predict many important features that  
are observed experimentally (drip lines, saturation, orbit evolution, etc…) 

$   Experimental binding is predicted accurately up to the lower sd shell 
(A≈30) but deteriorates for medium mass isotopes (Ca and above) with 
roughly 1 MeV/A over binding. 

$   more short-range repulsion or fitting to 
mid masses will help [see NNLOsat talk, atc…]. 
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Mystery  Surrounding  Neutron  Stars  Heats  Up
Scientists  have  long  thought  that  nuclear  reactions

within  the  crust  of  a  neutron  star  contributed  to  the

heating  of  the  star’s  surface.  However,  new  research

recently  published  in  Nature  by  a  team  at  Michigan  State

University  has  researchers  rethinking  that...

PAC38  Call  for  Proposals

The  38th  meeting  of  the  NSCL  Program  Advisory

Committee  (PAC)  meeting  will  be  held  approximately

April  14-­15,  2014.  The  Call  for  Proposals  will  be

announced  on  approximately  December  9,  2013,  with  a

proposal  submission  deadline  of  approximately  February

21,  2014.  We  anticipate  that  first  experiments  with  ReA3

will  be  possible  starting  in  September  2014.  Due  to  the

limited  operational  experience  with  ReA3,  PAC38  will

consider  experiments  only  for  a  limited  set  of  beams  and

intensities.
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