Progress in Ab-Initio Techniques in Nuclear Physics TRIUMF -- 17-20 February 2015

Evolution of correlations and shell model charges from SCGF

Carlo Barbieri — University of Surrey

Collaborators:

A. Cipollone, CB, P. Navrátil:

Phys. Rev. Lett. **111**, 062501 (2013) arXiv:1412.0491 [nucl-th] (2014)

V. Somà, A. Cipollone, CB, P. Navrátil, T. Duguet:

Phys. Rev. C 89, 061301R (2014)

CB, J. Phys.: Conf. Ser. 529, 012005 (2014)

Nuclear forces in exotic nuclei

Carlo Barbieri – 5/11

Example of spectral function ⁵⁶Ni

One-body Green's function (or propagator) describes the motion of quasiparticles and holes:

$$g_{\alpha\beta}(E) = \sum_{n} \frac{\langle \Psi_{0}^{A} | c_{\alpha} | \Psi_{n}^{A+1} \rangle \langle \Psi_{n}^{A+1} | c_{\beta}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{n}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{k} \frac{\langle \Psi_{0}^{A} | c_{\beta}^{\dagger} | \Psi_{k}^{A-1} \rangle \langle \Psi_{k}^{A-1} | c_{\alpha} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{k}^{A-1}) - i\eta}$$

...this contains all the structure information probed by nucleon transfer (spectral function):

Concept of correlations

[CB and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

UNIVERSITY OF

Carlo Barbieri – 4/11

Concept of correlations

[CB and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

UNIVERSITY OF

Carlo Barbieri – 4/11

Truncation scheme:	Dyson formulation (closed shells)	Gorkov formulation (semi-magic)		
1 st order:	Hartree-Fock	HF-Bogolioubov		
2 nd order:	2 nd order	2 nd order (w/ pairing)		
 3 rd and all-orders sums, P-V coupling:	ADC(3) FRPA etc	G-ADC(3) work in progress		

Gorkov self-energy up to 2nd order

an name of M

 $= \delta_{J_{ux}j_x} \delta_{M_{ux}-m_x} \sum_{\kappa,n,\kappa} \eta_\alpha \pi_{k_1} f_{\alpha\kappa_1\kappa_1\kappa_2}^{n_\alpha n,n,n_1} \frac{\sqrt{2J}}{\sqrt{2J}}$

 $= -\delta_{I_{\alpha}i_{\alpha}}\delta_{M_{\alpha}-m_{\alpha}}\eta_{\alpha}\mathcal{N}_{n,[m_{\alpha}n_{\alpha}]I_{\alpha}}^{n_{i_{1}}n_{i_{2}}n_{i_{3}}}$

which recovers relation (72a). The remaining quan

{k1, k2, k3} indices and can be obtained from Eqs. (C

 $\mathcal{P}_{a(J_{c}J_{at})}^{k_{1}k_{2}k_{3}} = \sum_{J_{c}} (-1)^{J_{c}+J_{d}+j_{k_{2}}+j_{k_{3}}} \sqrt{2J_{c}}$

 $= -\delta_{J_{ik}j_k}\delta_{M_{ik}m_k}\sum_{i}\sum_{j}\pi_k$

 $= \delta_{J_{uv}, j_u} \delta_{M_{uv}, m_u} \sum \sum \pi_{k_2}$

 $\mathcal{R}_{a(J_cJ_{us})}^{k_1k_2k_3} = \sum (-1)^{2j_1+2J_d} \sqrt{2J_c+1}$

× $\bar{V}_{n_{4}n_{5}n_{5}n_{6}}^{J_{d}[\alpha\kappa_{1}\kappa_{1}]} \mathcal{V}_{n_{5}[\kappa_{1}]}^{n_{k_{1}}} \mathcal{V}_{n_{5}[\kappa_{1}]}^{n_{k_{3}}}$ with $\equiv \delta_{J_{uv} i_i} \delta_{M_{uv} m_i} Q_{n_e [a \kappa_1 \kappa_1 \kappa_2] J_e}^{n_{i_1} n_{i_2} n_{i_3}}$

 $\times \bar{V}_{n,n,n,n}^{J_d[a\kappa_1\kappa_3\kappa_2]} U_{n,n+1}^{n_{k_3}} U_{n,n+1}^{n_{k_2}}$ $\equiv \delta_{J_{uv}, j_u} \delta_{M_{uv}m_u} \mathcal{R}_{n_u}^{n_{k_1}n_{k_2}n_{k_3}} \mathcal{R}_{n_u}^{n_{k_1}n_{k_2}n_{k_3}} \mathcal{I}_{\mathcal{I}}$ $S_{a(J_cJ_{ud})}^{k_1k_2k_3} = \sum (-1)^{2j_1+2J_d} \sqrt{2J_c+1}$

 $= \delta_{J_{uv}, j_u} \delta_{M_{uv} m_u} \sum_{n_v n_v n_v} \sum_{J_d} \pi_{k_1}$

 $\times \bar{V}_{n,n,n,n}^{J_d[\alpha\kappa_1\kappa_2\kappa_2]} \mathcal{V}_{n,n,n}^{\kappa_{k_1}} \mathcal{V}_{n,n,n}^{\kappa_{k_2}}$

These terms are finally put together to form the different contributions to second-order self-energies. Let us consider Σ_{ab} as

an example [see Eq. (75)]. By inserting Eqs. (C35) and (C36) and summing over all possible total and intermediate angular

 $\equiv \delta_{J_{uv} j_{u}} \delta_{M_{uv} m_{u}} S^{n_{k_{1}} n_{k_{2}} n_{k_{3}}}_{n_{u} (m_{v} n_{v} n_{v}) J_{v}}$

 j_{k_1} to J_{10t} and J_c as follows:

Ab INITIO SELF-CONSISTENT GORKOV-GREEN's ...

5. Block-diagonal structu

a. First or The goal of this subsection is to discuss how the block-diagona reflects in the various self-energy contributions, starting with the fir and (C19) into Eq. (B7), and introducing the factor

$$f_{\alpha\beta\nu\delta}^{n_sn_bn_cn_d} \equiv \sqrt{1 + \delta_{\alpha\beta} \delta_{n_sn_s}}$$

one obtains

$$\begin{split} \Sigma_{ab}^{11(1)} &= \sum_{cd,k} \widehat{V}_{acdd} \widehat{V}_{d}^{k*} \widehat{V}_{c}^{k} & \text{angular momentum couplings of the three} \\ &= \sum_{cd,k} \sum_{\gamma} \sum_{m_{c}} \sum_{JM} \int_{a\gamma\beta\gamma}^{m_{c}n_{c}n_{c}n_{c}} C_{j,m_{c}}^{JM} & \text{give } J_{kk}. \text{ The recoupled } \mathcal{M} \text{ term is coupling} \\ &= \delta_{agb} \delta_{m_{c}m_{b}} \sum_{n_{c}n_{c}} \sum_{J} \int_{a\gamma\beta\gamma}^{J} f_{a\gamma\alpha\gamma}^{n_{c}n_{c}n_{c}} \frac{2}{2} & \mathcal{M}_{a(J,J_{m})}^{k,k} = \sum_{m_{c}m_{c}m_{c}} C_{j,m_{c}}^{J,M_{c}} C_{J,M_{c}}^{Jm} \\ &= \delta_{agb} \delta_{m_{c}m_{b}} \sum_{n_{c}n_{c}} \sum_{J} \int_{a\gamma\alpha\gamma}^{J} f_{a\gamma\alpha\gamma\gamma}^{n_{c}n_{c}n_{c}} \frac{2}{2} & \mathcal{M}_{a(J,J_{m})}^{k,k} = \sum_{m_{c}m_{c}m_{c}m_{c}M_{c}} C_{j,m_{c}}^{J,M_{c}} C_{J,M_{c}}^{Jm} \\ &= \delta_{agb} \delta_{m_{c}m_{c}} \sum_{n_{c}n_{c}n_{c}} \sum_{m_{c}n_{c}n_{c}} \sum_{m_{c}n_{c}n_{c}} \sum_{m_{c}n_{c}n_{c}} \sum_{m_{c}n_{c}n_{c}} \sum_{m_{c}} \sum_{m$$

where the block-diagonal normal density matrix is introduced throu $\rho_{n_s n_b}^{[\alpha]} = \sum \mathcal{V}_{n_b [\alpha]}^{n_b}$

and properties of Clebsch-Gordan coefficients has been used. The $\delta_{\pi_a \pi_b}$ and $\delta_{q_a q_b}$, leading to $\delta_{\alpha \beta} = \delta_{j_a j_b} \delta_{\pi_a \pi_b} \delta_{q_a q_b}$. Similarly, for $\Sigma^{22(1)}$

$$\begin{split} \Sigma_{ab}^{22(1)} &= -\sum_{cd,k} \tilde{V}_{bcdd} \tilde{V}_{c}^{k} \tilde{V}_{d}^{k*} \\ &= -\delta_{ad,k} \delta_{m_{a}m_{b}} \sum_{\substack{\kappa,n_{i}, \gamma \\ \sigma \neq \sigma}} \sum_{j} \int_{\sigma j} \int_{\sigma j} f_{\sigma j}^{n_{i}} \\ &= -\delta_{jd} \delta_{m_{a}m_{b}} \sum_{\substack{\kappa,n_{i}, \gamma \\ \sigma \neq \sigma}} \sum_{j} \int_{\sigma j} f_{\sigma j}^{n_{i}} \\ &= -\delta_{jd} \delta_{m_{a}m_{b}} \sum_{\substack{\kappa,n_{i}, \gamma \\ \sigma \neq \sigma}} \sum_{j} \int_{\sigma j} f_{\sigma j}^{n_{i}} \\ &= -\delta_{ad} \delta_{m_{a}m_{b}} \left[\Lambda_{\alpha j}^{n_{a}} \right]^{*} \\ &= -\delta_{ad} \delta_{m_{a}m_{b}} \left[\Lambda_{\alpha j}^{n_{a}} \right]^{*} \\ &= \delta_{ad} \delta_{$$

where general properties of Clebsch-Gord

Let us consider the anomalous contributions to the first-order self-er derives $\Sigma_{ab}^{12\,(1)} = \frac{1}{2} \sum \overline{V}_{abcd} \overline{V}_c^{k*} \overline{U}_d^k$

$$\mathcal{N}_{a(J_c J_{un})}^{-(-)} = \delta_{J_{un} J_a} \delta_{M_{un} m_a} \sum_{n,n}^{-}$$

 $\equiv \delta_{J_{un} J_a} \delta_{M_{un} m_a} \mathcal{N}_c$

- Arderlander

 $\equiv \delta_{\alpha\beta} \delta_{m_c m_b} \Sigma^{21}_{n_c}$ = $\delta_{\alpha\beta} \delta_{m_c m_b} \tilde{h}^{(\alpha)}_{n_c s}$

Block-diagonal forms of second-order s

 $\times C_{j_1,m_1,j_2,m_3}^{J_{cd}M_c} C_{J_{cd}M_{cd},m_1}^{J_{cd}M_{cd}} C_{J_{cd}M_{cd},m_1}^{J_{cd}M_{cd}}} C_{J_{cd}M_{cd},m_1}^{J_{cd}M_{cd}}} C_{J_{cd}M_{cd},m_1}^{J_{cd}M_{cd}}} C_{J_{cd}M_{cd},m_1}^{J_{cd}M_{cd}}} C_{J_{cd}M_{cd},m_2}^{J_{cd}M_{cd}}} C_{J_{cd}M_{cd},m_2}^{J_{cd}M_{cd}}} C_{J_{cd}M_{cd}}} C_{J_{cd}M_{cd}}^{J_{cd}M_{cd}}} C_{J_{cd}M_{cd}}} C_{J_{cd}M_{cd}}^{J_{cd}M_{cd}}} C_{J_{cd}M_{cd}}} C_{J_{cd}M_{$ $= \sum_{m_1m_2m_3}\sum_{M_r}\sum_{n_rn_rn_r}\sum_{J_rM_r}\eta_{k_3} f_{\alpha\kappa_3}^{n_rr}$

$$= -\frac{1}{2} \sum_{n,n,q_1} \sum_{\gamma} \sum_{m_i} \sum_{JM} f_{\alpha\beta\gamma\gamma}^{n_i n_i n_i n_i} \eta_b \eta_c C_j$$
 One can show that the same result is obtain

$$= -\frac{1}{2} \sum_{n,k,l} \sum_{p} \sum_{m_{c}} \sum_{j} \int_{a,k_{c}}^{a_{p},a_{p},a_{m_{c}}} f_{ab} \gamma_{p} \gamma_{c}}^{a_{p},a_{p},a_{m_{c}}} \eta_{b} \pi_{c} C_{j,n}^{J,M_{c}} = \sum_{m_{l}m_{2}m_{3}} C_{j,m_{c}}^{J,M_{c}} \sum_{j} C_{j,m_{c}}^{J,M_{c}$$

.

where the block-diagonal anomalous density matrix is introduced th

$$\tilde{\rho}_{n_{k}\bar{n}_{b}}^{[\alpha]} = \sum_{n_{k}} U_{n_{k}[\alpha]}^{n_{k}} V_{n_{k}[\alpha]}^{n_{k}}.$$

momenta, one has

$$= \sum_{n,M,n,n,n} \sum_{j,k} \eta_{\alpha} \eta_{kj} f_{\alpha \alpha \beta n \alpha n}^{j,n,n} C_{j,n}^{j,k}$$

$$= \sum_{n,M,n,n,n} \sum_{j,k} \eta_{\alpha} \eta_{kj} f_{\alpha \alpha \beta n \alpha n}^{j,n,n} C_{j,n}^{j,n}$$

$$= \sum_{n,M,n,n,n} \eta_{\alpha} \pi_{kj} f_{\alpha \alpha \beta n \alpha \beta n}^{j,n,n,n,n} \frac{\sqrt{2J_c + 1}}{\sqrt{2J_a + 1}} (- \sum_{n,M,n,n,n} \sum_{j,k} \sum_{n,M,n,n,n} \sum_{j,k} \sum_{n,M,n,n,n} \frac{\sqrt{2J_c + 1}}{\sqrt{2J_a + 1}} (- \sum_{n,M,n,n,n} \sum_{j,k} \sum_{n,M,n,n,n} \sum_{j,k} \sum_{n,M,n,n,n} \frac{\sqrt{2J_c + 1}}{\sqrt{2J_a + 1}} (- \sum_{n,M,n,n,n} \sum_{j,k} \sum_{j,k} \sum_{n,M,n,n,n} \sum_{j,k} \sum_{n,M,n,n,n} \sum_{j,k} \sum_{j,k} \sum_{n,M,n,n,n} \sum_{j,k} \sum_{j,k$$

$$\Sigma_{n_{c}n_{b}}^{11(a)(2)} = \sum_{n_{i_{1}}n_{i_{2}}} \sum_{l_{c}} \sum_{e_{i_{1}}\in S_{i_{2}}} \sum_{l_{c}} \sum_{e_{i_{1}}\in S_{i_{1}}} \sum_{l_{c}} \sum_{e_{i_{1}}\in S_{i_{1}}$$

 $C_{n_{a}[ax)\kappa_{1}\kappa_{2}]J_{c}}^{n_{b_{1}}n_{b_{2}}n_{b_{3}}} = \frac{1}{\sqrt{c}} \left[\mathcal{M}_{n_{a}[ax)\kappa_{1}\kappa_{2}]J_{c}}^{n_{b_{1}}n_{b_{2}}n_{b_{3}}} - \mathcal{P}_{n_{a}[ax)\kappa_{1}\kappa_{2}]J_{c}}^{n_{b_{1}}n_{b_{2}}n_{b_{3}}} - \mathcal{R}_{n_{a}[ax)\kappa_{1}\kappa_{2}]J_{c}}^{n_{b_{1}}n_{b_{2}}n_{b_{3}}} \right]$

$$= \sum_{n_1, n_2, n_3} \sum_{L_{\ell}} \sum_{e_1 \in e_2, e_3} \left[\omega - (\omega_{k_1} + \omega_{k_2} + \omega_{k_3}) + i\eta + \omega + (\omega_{k_1} + \omega_{k_1} + \omega_{k_2}) - i\eta \right], \quad (Cover)$$

$$\Sigma_{n_{0}n_{0}}^{22(a)(2)} = \sum_{n_{11}n_{12},n_{13}} \sum_{J_{c}} \sum_{e_{1},e_{2},e_{3}} \left\{ \frac{\nu_{n_{c}}(ae_{1}e_{1}e_{2})J_{c}}{\omega - (\omega_{k_{1}} + \omega_{k_{2}} + \omega_{k_{3}}) + i\eta} + \frac{\nu_{n_{c}}(ae_{1}e_{1}e_{2})J_{c}}{\omega + (\omega_{k_{1}} + \omega_{k_{2}}) - i\eta} \right\}.$$
(C44d

6. Block-diagonal structure of Gorkov's equations

 $\times \bar{V}^{J_d[a\kappa_1\kappa_1\kappa_3]}_{\kappa_a\kappa_1\kappa_s\kappa_s}\mathcal{U}^{n_{k_1}}_{n_s[\kappa_1]}\mathcal{U}^{n_{k_3}}_{n_s[\kappa_1]}\mathcal{U}^{n_{k_3}}_{n_s[\kappa_3]}$ In the previous subsections it has been proven that all single-particle Green's functions and all self-energy contributions entering $\equiv \delta_{J_{uv}, j_u} \delta_{M_{uv}, m_u} \mathcal{P}_{\pi_u}^{n_{k_1} n_{k_2} \pi_{k_3}} \int_{J_u}$ Gorkov's equations display the same block-diagonal structure if the systems is in a 0+ state. Defining

$$T_{ab} - \mu \delta_{ab} \equiv \delta_{\alpha\beta} \delta_{m_am_b} \left[T_{n,n_b}^{(a)} - \mu^{(q_a)} \delta_{n_an_b} \right],$$
 (C45)

 $Q_{a(J_cJ_{ust})}^{k_1k_2k_3} = \sum_{i} (-1)^{J_c+J_d+j_{k_2}+j_{k_3}} \sqrt{2J_c}$ introducing block-diagonal forms for amplitudes W and Z through

$$\mathcal{W}_{k,[i_{r},j_{sc}]}^{k,[i_{r},j_{sc}]} \equiv \delta_{J_{sc}j_{s}}\delta_{M_{sc}m_{k}} \mathcal{W}_{n_{k}[v_{r}(n_{i_{r}})n_{i_{r}}],r}^{i_{l}(i_{r}(n_{i_{r}})n_{i_{r}})}$$
(C46a)
$$\sigma_{k}^{i_{k},i_{r}(n_{i_{r}})} = \delta_{j_{sc}j_{s}}\delta_{m_{sc}m_{k}} \mathcal{U}_{n_{sc}}^{i_{l}(i_{r}(n_{i_{r}})n_{i_{r}})}$$
(C46a)

$$Z_{k(J_{c}J_{bs})}^{*} \equiv -\delta_{J_{bs}j_{k}}\delta_{M_{bs}-m_{k}} \eta_{k} Z_{n_{k}[\kappa_{3}\kappa_{1}\kappa_{2}]J_{c}}, \qquad (C46b)$$

$$(\omega_k - E_{k_1 k_2 k_3}) \mathcal{M}_{n_k}^{n_k, n_{k_3}, n_{k_3}}_{n_k (k_1 \times n_{k_3}) I_i} \equiv \sum_{n_k, a} [(\mathcal{G}_{n_k}^{n_k, n_k, n_{k_3}}_{n_k (a \times n_k) I_i})^* \mathcal{U}_{n_k}^{n_k} (a) + (\mathcal{D}_{n_k}^{n_k, n_k, n_{k_3}}_{n_k (a \times n_k) I_i})^* \mathcal{V}_{n_k}^{n_k} (a)],$$
(C47a)

$$\left(\omega_{k} + E_{k_{1}k_{2}}\right) \mathcal{Z}_{n_{k}\{k_{3},n_{4}\},I}^{n_{k_{1}}n_{k_{3}}n_{4}} \equiv \sum_{n_{d} \neq 0} \left[\mathcal{D}_{n_{a}\{n_{3},n_{4}\},I}^{n_{a},n_{4}} \mathcal{U}_{A_{a}\{a\}}^{n_{a}} + \mathcal{C}_{n_{a}\{ax,y,n_{2}\},I}^{n_{a}} \mathcal{U}_{A_{a}\{a\}}^{n_{a}} \right], \quad (C47b)$$

$$128$$

and using Eqs. (C29), (C31), (C32), (C34), and (C44), one finally writes Eqs. (81) as $= -\delta_{J_{ac}j_c}\delta_{M_{ac}m_s}\sum_{n.n,n_c}\sum_{J_c}\pi_i$

$$\omega_{k} \mathcal{U}_{n_{k}}^{a_{k}}[\mu] = \sum_{n_{0}} \left[\left(\mathcal{I}_{n_{k}}^{a_{k}} - \mu^{(q_{k})} \delta_{n_{k},n_{k}} + \Lambda_{n_{k}}^{a_{k}} \right) \mathcal{U}_{n_{k}}^{a_{k}}[\mu] + \tilde{h}_{n_{k}}^{a_{k}} \mathcal{V}_{n_{k}}^{a_{k}} \right] \right] \\ + \sum_{n_{k}, n_{0}} \sum_{n_{k}, n_{0}} \sum_{n_{k}, n_{0}} \sum_{n_{k}, n_{0}} \sum_{n_{k}, n_{0}} \left[\mathcal{L}_{n_{k}, (n_{0}, n_{0}, n_{0})}^{a_{k}} \mathcal{L}_{n_{k}, (n_{0}, n_{0}, n_{0},$$

$$\begin{split} \gamma_{n_{c}}^{e_{1}}(\mu) &= \sum_{n_{0}} \left[- \left(T_{n_{0}n_{0}}^{e_{1}} - \mu^{(q_{c})} \, \delta_{n_{0}n_{0}} + \Lambda_{n_{c}n_{0}}^{(\mu)} \right) \mathcal{V}_{n_{0}}^{e_{1}}(\mu) + \mathcal{K}_{n_{0}n_{0}}^{(\mu)} \, \mathcal{U}_{n_{0}}^{e_{1}}(\mu) \right] \\ &+ \sum_{n_{1},n_{2},n_{3}} \sum_{\kappa_{1}c_{1}\kappa_{1}} \sum_{J_{c}} \left[\mathcal{D}_{n_{0}}^{n_{1},n_{2},n_{3}} \mathcal{W}_{n_{0}}^{n_{1},n_{2},n_{3}}(\mu) + \left(\mathcal{C}_{n_{0}}^{e_{1},n_{2},n_{1}} \mathcal{U}_{n_{0}}^{e_{1}}(\mu) \right)^{*} \mathcal{Z}_{n_{0}}^{e_{1},n_{2},n_{3}}(\mu) \right]. \end{split}$$
(C48b)

064317-30

cdefek

(B31)

330)

(C43a)

011)

326)

327)

 $^{11}_{ab}(\omega') G^{12}_{ab}(\omega'') G^{21}_{ab}(\omega' + \omega'' - \omega)$

$$-\frac{1}{2}\sum_{\substack{cide_{f}k,k_{1}k_{2}k_{3}}} \bar{V}_{cfar} \bar{V}_{k} \bar{\omega}_{k} \delta_{k}} \left\{ \frac{V_{k}^{k_{1}} U_{k}^{k_{2}*} U_{k}^{k_{3}*} U_{k}^{k_{3}*} \bar{U}_{k}^{k_{3}*} \bar{V}_{f}^{k_{3}}}{\omega - (\omega_{k_{1}} + \omega_{k_{2}} + \omega_{k_{3}}) + i\eta} + \frac{\bar{U}_{k}^{k_{1}} \bar{V}_{k}^{k_{3}} \bar{U}_{k}^{k_{3}*} U_{k}^{k_{3}} U_{k}^{k_{3}*}}{\omega + (\omega_{k_{1}} + \omega_{k_{1}} + \omega_{k_{3}}) - i\eta} \right\}.$$
(B32)

064317-23

Gorkov self-energy up to 2nd order

1st order → energy-independent self-energy V. Somà, CB, T. Duguet, , Phys. Rev. C 89, 024323 (2014)
V. Somà, CB, T. Duguet, Phys. Rev. C 87, 011303R (2013)
V. Somà, T. Duguet, CB, Phys. Rev. C 84, 064317 (2011)

2nd order and energy-dependent self-energy

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength—on both sides of the Fermi surface...

(ph)

(ph)

O^{II}(pp/hh)

= hole

R^{(2p1h}

= particle

*CB et al., Phys. Rev. C***63**, 034313 (2001) *Phys. Rev. A***76**, 052503 (2007) *Phys. Rev. C***79**, 064313 (2009)

•A complete expansion requires <u>all</u> <u>types</u> of particle-vibration coupling

"Extended" Hartree Fock

...these modes are all resummed exactly and to all orders in a *ab-initio* many-body expansion.

•The Self-energy $\Sigma^*(\omega)$ yields both single-particle states and scattering

JNIVERSITY OF

Carlo Barbieri – 17/11

Ab-initio Nuclear Computation & BcDor code

Quenching of absolute spectroscopic factors

Reaching medium mass and neutron rich isotopes

Degenerate system (open shells, deformations...)

Hamiltoninan, including three nucleon forces

Convergence of s.p. spectra w.r.t. SRG

Cutoff dependence is reduces, indicating good convergence of many-body truncation and many-body forces

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. **111**, 062501 (2013) *and* arXiv:1412.0491 [nucl-th] (2014)

> cf. microscopic shell model [O[·] et al, PRL**105**, 032501 (2010).]

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. **111**, 062501 (2013) and arXiv:1412.0491 [nucl-th] (2014)

 \rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen

→ cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

UNIVERSITY OF $\frac{N3LO (\Lambda = 500 \text{Mev/c}) \text{ chiral NN interaction evolved to 2N + 3N forces (2.0 \text{fm}^{-1})}{N2LO (\Lambda = 400 \text{Mev/c}) \text{ chiral 3N interaction evolved (2.0 \text{fm}^{-1})}$

Results for the oxygen chain

A. Cipollone, CB, P. Navrátil, arXiv:1412.0491 [nucl-th] (2014)

 \rightarrow Single particle spectra slightly diluted and

 \rightarrow systematic underestimation of radii

The sd-pf shell gap

Neutron spectral distributions for ⁴⁸Ca and ⁵⁶Ni:

- sd-pf separation is overestimated <u>even</u> with leading order N2LO 3NF

- Correct increase of *p*_{3/2}-*f*_{7/2} splitting (see Zuker 2003)

		2NF only	2+3NF(ind.)	2+3NF(full)	Experiment
	¹⁶ O:	2.10	2.41	2.38	2.718±0.210 [19]
CB <i>et al.</i> , arXiv:1211.3315 [nucl-th]	⁴⁴ Ca:	2.48	2.93	2.94	3.520±0.005 [20]

Neutron spectral function of Oxygens

Z/N asymmetry dependence of SFs - Theory

Ab-initio calculations explain the Z/N dependence but the effect is much lower than suggested by direct knockout

Effects of continuum become important at the driplines

Z/N asymmetry dependence of SFs - Theory

Ab-initio calculations explain the Z/N dependence but the effect is much lower than suggested by direct knockout

Effects of continuum become important at the driplines

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]

\rightarrow Analysis of ¹⁴O(d,t)¹³O and ¹⁴O(d,³He)¹³N transfer reactions @ SPIRAL

Reaction	<i>E</i> * (MeV)	J^{π}	R ^{HFB} (fm)	<i>r</i> ₀ (fm)	$C^2 S_{exp}$ (WS)	$\frac{C^2 S_{\rm th}}{0p + 2\hbar\omega}$	R _s (WS)	$C^2 S_{exp}$ (SCGF)	$C^2 S_{\rm th}$ (SCGF)	R _s (SCGF)
$^{14}O(d, t)$ ^{13}O	0.00	3/2-	2.69	1.40	1.69 (17)(20)	3.15	0.54(5)(6)	1.89(19)(22)	3.17	0.60(6)(7)
14 O (<i>d</i> , 3 He) 13 N	0.00	$1/2^{-}$	3.03	1.23	1.14(16)(15)	1.55	0.73(10)(10)	1.58(22)(2)	1.58	1.00(14)(1)
	3.50	$3/2^{-}$	2.77	1.12	0.94(19)(7)	1.90	0.49(10)(4)	1.00(20)(1)	1.90	0.53(10)(1)
16 O (<i>d</i> , <i>t</i>) 15 O	0.00	$1/2^{-}$	2.91	1.46	0.91(9)(8)	1.54	0.59(6)(5)	0.96(10)(7)	1.73	0.55(6)(4)
16 O (<i>d</i> , 3 He) 15 N [19,20]	0.00	$1/2^{-}$	2.95	1.46	0.93(9)(9)	1.54	0.60(6)(6)	1.25(12)(5)	1.74	0.72(7)(3)
	6.32	$3/2^{-}$	2.80	1.31	1.83(18)(24)	3.07	0.60(6)(8)	2.24(22)(10)	3.45	0.65(6)(3)
18 O (<i>d</i> , 3 He) 17 N [21]	0.00	$1/2^{-}$	2.91	1.46	0.92(9)(12)	1.58	0.58(6)(10)			

- Overlap functions and strengths from GF

- Rs independent of asymmetry

Mapping Ab-Initio calculation into the shell model approach

Recent works through CCM and IMRSG:

Bogner et al Phys. Rev. Lett. 113, 142501 (2014) Jansen et al Phys. Rev. Lett. 113, 142502 (2014)

✓ works well for spectra

Calculation of observables: <u>need many-body corrections, to evolve operators,</u> <u>add electroweak currents, ect...</u>

See Menendez , Stroberg, Pastore and other talks today...

To have a look at the many-body and effects:

Extract vibration coupling form microscopic calculations...

CB, T. Otsuka, in preparation

"traditional" MBPT approach

PT expansion of effective interactions:

Effective charges (estimate form many-body effects):

Dressed (self consistent) propagator:

PT expansion of effective interactions:

but NO self-en insertions

Effective charges (many-body contributions):

Some results - ^ANi chain in pfg_{9/2} shell

Interaction: NNLO-opt, AV18 (+Gmatrix)

Single particle basis: HF

CB, T. Otsuka, in preparation

Some results - ^ANi chain in pfg_{9/2} shell

Interaction: NNLO-opt, AV18 (+Gmatrix)

Single particle basis: HF

Averaged charges

Preliminary

→ "predicted" charges are smaller than usual phenomenological ones

→ NO higher order currents here -- just the many-body correction...

CB, T. Otsuka, in preparation

Some results - O and C chains Preliminary

Interaction: N3LO(500) (+Gmatrix)

Single particle basis: HF or HFB

	C10	C22	O14	O16	O20
$ u_{s1/2} $ - $ u_{d3/2}$:	0.142	0.094	-0.751	0.160	0.128
$ u_{s1/2} $ - $ u_{d5/2}$:	0.226	0.125	0.261	0.214	0.181
$ u_{d3/2} $ - $ u_{d3/2}$:	0.278	0.121	0.198	0.082	0.155
$ u_{d3/2} $ - $ u_{d5/2}$:	0.320	0.137	0.249	0.274	0.214
$ u_{d5/2} $ - $ u_{d5/2}$:	0.278	0.151	0.294	0.250	0.232
, ,					
$\pi_{s1/2}$ - $\pi_{d3/2}$:	1.131	1.051	0.594	1.105	1.078
$\pi_{s1/2}$ - $\pi_{d5/2}$:	1.155	1.094	1.161	1.142	1.134
$\pi_{d3/2}$ - $\pi_{d3/2}$:	1.061	1.054	1.441	0.976	1.070
$\pi_{d3/2}$ - $\pi_{d5/2}$:	1.141	1.107	1.042	1.091	1.170
$\pi_{d5/2}$ - $\pi_{d5/2}$:	1.161	1.077	1.139	1.107	1.099
$ u_{p1/2} $ - $ u_{p3/2}$:	0.359	0.319	0.344	0.401	0.404
$ u_{p3/2} $ - $ u_{p3/2}$:	0.315	0.247	0.367	0.316	0.307
,					
$\pi_{p1/2}$ - $\pi_{p3/2}$:	1.102	1.134	1.183	1.179	1.198
$\pi_{p3/2}$ - $\pi_{p3/2}$:	1.128	1.103	1.075	1.056	1.082

BE(2) charges

→ "predicted" charges are smaller than usual phenomenological ones

→ NO higher order currents here -- just the many-body correction...

Conclusions

- What to did we learn about realistic chiral forces from ab-initio calculations?
 - → Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
 - → Experimental binding is predicted accurately up to the lower sd shell (A≈30) but deteriorates for medium mass isotopes (Ca and above) with roughly 1 MeV/A over binding.
 - → more short-range repulsion or fitting to mid masses will help [see NNLOsat talk, atc...].

Thank you for your attention!!!

enerale atomique • enerales atlematives TECHNISCHE UNIVERSITÄT DARMSTADT

A. Cipollone, A. Rios

- V. Somà, T. Duguet
- A. Carbone
- P. Navratil
- A. Polls
- W.H. Dickhoff, S. Waldecker
- D. Van Neck, M. Degroote

M. Hjorth-Jensen