Progress in Ab-Initio Techniques in Nuclear Physics

Evolution of correlations and shell model charges from SCGF

Carlo Barbieri - University of Surrey
Collaborators:
A. Cipollone, CB, P. Navrátil:

Phys. Rev. Lett. 111, 062501 (2013) arXiv:1412.0491 [nucl-th] (2014)
V. Somà, A. Cipollone, CB, P. Navrátil, T. Duguet: Phys.Rev. C 89, $061301 R$ (2014)

CB, J. Phys.: Conf. Ser. 529, 012005 (2014)

Nuclear forces in exotic nuclei

Nucleon interactions are very complex and difficult to handle

Change of regime from stable to dripline isotopes !

Neutron-rich matter ($\mathrm{N}>\mathrm{Z}$):

- Neutron star matter EoS
- Symmetry energy

Driplines of nitrogen and fluorine isotopes
Three-nucleon Force (3NF)
[A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)]

Tensor force (p-n)

Example of spectral function ${ }^{56} \mathrm{Ni}$

One-body Green's function (or propagator) describes the motion of quasiparticles and holes:

$$
g_{\alpha \beta}(E)=\sum_{n} \frac{\left\langle\Psi_{0}^{A}\right| c_{\alpha}\left|\Psi_{n}^{A+1}\right\rangle\left\langle\Psi_{n}^{A+1}\right| c_{\beta}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{n}^{A+1}-E_{0}^{A}\right)+i \eta}+\sum_{k} \frac{\left\langle\Psi_{0}^{A}\right| c_{\beta}^{\dagger}\left|\Psi_{k}^{A-1}\right\rangle\left\langle\Psi_{k}^{A-1}\right| c_{\alpha}\left|\Psi_{0}^{A}\right\rangle}{E-\left(E_{0}^{A}-E_{k}^{A-1}\right)-i \eta}
$$

..this contains all the structure information probed by nucleon transfer (spectral function):

Concept of correlations

independent particle, picture

Spectral function: distribution of momentum (p_{m}) and energies (E_{m})

[CB and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Concept of correlations

independent particle picture

Spectral function: distribution of momentum (p_{m}) and

Particle-vibration

$\overline{==-\square}$

 So far, fully characterised only fo rs...!stable
[W. Dickhoff, CB, prog. Part. Null. Phys. $52,377(2004)$]

$$
\begin{equation*}
100-150 \tag{2004}
\end{equation*}
$$

[Mougey et al., Nucl. Phys. A335, 35 (1980)]
[CB and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]

Truncation scheme:	Dyson formulation (closed shells)	Gorkov formulation (semi-magic)
$1^{\text {st }}$ order:	Hartree-Fock	HF-Bogolioubov
$2^{\text {nd }}$ order:	$2^{\text {nd }}$ order	$2^{\text {nd }}$ order (w/ pairing)
\ldots	\ldots	
$3^{\text {rd }}$ and all-orders sums, P-V coupling:	ADC(3) FRPA	G-ADC(3)

Approaches in GF theory

Gorkov self-energy up to 2nd order

 V . SOMÃ, T. DUGUET, AND C. BARBIERI

Ab LNITIO SELR:CONSISTENT GORKOV-GREEN's,
5. Block-diagonal structu
a. First ord
ck-diagona

The goal of this subsection is to discuss how the block-diagona
reflects in the various self-energy contributions, starting with the fin reflicets in the various self-energy contributions, star

$$
f_{a \beta, y^{n}, n_{0},}^{n} \equiv \sqrt{1+\delta_{a p} \delta_{n, n}}
$$

one obtains
$\Sigma_{a b}^{1(1)}=\sum_{c, i, k} \nabla_{a t a d} D_{d}^{+} \nu_{c}^{t}$

$\equiv \delta_{a p} \delta_{n, m,} \Sigma_{n, 0}^{11(1)(1)}$
$\equiv \delta_{a \rho} \delta_{n, m_{0},}, \Lambda_{n, n_{p},}^{(a)}$.
where the block-diagonal normal density matrix is introduced throu
and properties of Clebsch-Gocdan coefficients has been used. The $\delta_{\pi, \pi}$, and $\delta_{q, 9}$, leading to $\delta_{\text {of }}=\delta_{l, \delta_{0}} \delta_{\pi, \pi,} \delta_{q, a}$. Similarly, for $\Sigma^{22(1}$

Let us consider the anomalous contributions to the first-order self-en derives

Block-diagonal forms of second-order angular momentum couplings of the three \mathcal{Q}, \mathcal{R}, and \mathcal{S}. One proceeds first coupling give $J_{\text {bec. }}$. The recoupled \mathcal{M} term is compu

$=\sum_{m_{1}, w_{2}, M_{1}, M_{r}} \sum_{j=1} \sum_{\delta_{1}, \rho} \delta_{m_{0},}$

where general properties of Clebsch-Gord
$\equiv \delta_{S_{w} j_{\alpha}} \delta_{M_{m u} m_{\sim}} \mathcal{N}_{n}$
One can show that the same result is obta

These terms are finally put together to form dhe diet an example [see Eq. (75)]. By inserting Eqs. (C35) and (C36) and summing over all possible total and intermediate angular momenta, one has
(C48a)

6. Block-diagonal structure of Gorkor's equations

$$
\text { introducing block-diagonal forms for amplitudes } \mathcal{W} \text { and } \mathcal{Z} \text { through }
$$

 (C46a)
with

$$
\begin{aligned}
& \mathcal{R}_{a\left(J_{t} L_{\omega}\right)}^{k_{k} k_{j}}=\sum_{J_{f}}(-1)^{2 \lambda^{2}+2 J_{J}} \sqrt{2 J_{\varepsilon}+1}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{a b}^{12(1)}=\frac{1}{2} \sum_{c d, k} \nu_{a k e d} \nu_{c}^{k} \cdot \vec{u}_{\sigma}^{k}
\end{aligned}
$$

$\equiv \delta_{a p} \delta_{n, c_{0},} \Sigma_{n, n+n}^{12[\mid] \mid(1)}$
$\equiv \delta_{\alpha \beta} \delta_{n, \ldots, m} \hat{h}_{n, n}^{(\alpha)}$,

$$
\begin{align*}
& \Sigma_{c b}^{22(1)}=-\sum_{c d, k} v_{b c o d} \bar{v}_{c}^{*} \bar{\nu}_{d}^{*} . \\
& =-\delta_{a p} \delta_{n, w_{j}} \sum_{n \in m} \sum_{\gamma} \sum_{J} f_{a \gamma}^{m_{i}} \\
& \equiv \delta_{0 p} \delta_{m_{0}, m_{0}} \Sigma_{n, 0}^{21} \\
& =-\delta_{a p} \delta_{r_{0}, m_{0}} \Lambda_{n, \Lambda_{0}}^{[q]} \\
& =-\delta_{a \beta} \delta_{\delta_{n, t a s}}\left[\Lambda_{n, \alpha_{0}}^{(a)}\right]^{*} \text {. } \tag{480}
\end{align*}
$$

Gorkov self-energy up to 2nd order

V. Somà, CB, T. Duguet, , Phys. Rev. C 89, 024323 (2014)
$1^{\text {st }}$ order $" \rightarrow$ energy-independent
V. Somà, CB, T. Duguet, Phys. Rev. C 87, 011303R (2013)
V. Somà, T. Duguet, CB, Phys. Rev. C 84, 064317 (2011) self-energy

$2^{\text {nd }}$ order ${ }^{m \rightarrow}$ energy-dependent self-energy

$$
\Sigma_{a b}^{12(2)}(\omega)=
$$

The FRPA Method in Two Words

Particle vibration coupling is the main cause driving the distribution of particle strength-on both sides of the Fermi surface...

```
CB et al.,
Phys. Rev. C63, 034313 (2001)
Phys. Rev. A76, 052503 (2007)
Phys. Rev. C79, 064313 (2009)
```

- A complete expansion requires all types of particle-vibration coupling
...these modes are all resummed exactly and to all orders in a ab-initio many-body expansion.
-The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering

Ab-initio Nuclear Computation \& BcDor code

BoccaDorata code:
(C. Barbieri 2006-14
V. Somà 2011-14
A. Cipollone 2012-13)

- Provides a C++ class library for handling many-body propagators ($\approx 40,000$ lines, OpenMPI based).
- Allows to solve for nuclear spectral functions, many-body propagators, RPA responses, coupled cluster equations and effective interaction/charges for the shell model.

Code history:

core functions and FRPA shell model charges-interactions (lowest order) new Gorkov formalism for open-shell nuclei (at $2^{\text {nd }}$ order)

Coupled clusters equations
Three-nucleon forces (≈ 50 cores, 35 Gb but on the rise...)

Gorkov at $3^{\text {rd }}$ order (will become massively parallel...)

UNIVERSITY OF
SURREY

Quenching of absolute spectroscopic factors

[CB, Phys. Rev. Lett. 103, 202520 (2009)]

Overall quenching of spectroscopic factors is driven by:
SRC $\quad \rightarrow$ ~10\% part-vibr. coupling \rightarrow dominant "shell-model" \rightarrow in open shell

... with analogous conclusions for ${ }^{48} \mathrm{Ca}$

	10 osc. shells			Exp. [30]	$1 p 0 f$ space		
	FRPA (SRC)	full FRPA	$\begin{aligned} & \text { FRPA } \\ & +\Delta Z_{\alpha} \end{aligned}$		FRPA	SM	ΔZ_{α}
$\left\{\begin{array}{l} { }^{57} \mathrm{Ni}: \\ v 1 p_{1 / 2} \end{array}\right.$	0.96	0.63	0.61		0.79	0.77	-0.02
$v 0 f_{5 / 2}$	0.95	0.59	0.55		0.79	0.75	-0.04
$v 1 p_{3 / 2}$	0.95	0.65	0.62	$0.58(11)$	0.82	0.79	-0.03
$\begin{aligned} & { }^{55} \mathrm{Ni}: \\ & v 0 f_{7 / 2} \end{aligned}$	0.95	0.72	0.69		0.89	0.86	-0.03

SURREY

Reaching medium mass and neutron rich isotopes

\rightarrow Degenerate system (open shells, deformations...)
\rightarrow Hamiltoninan, including three nucleon forces

Convergence of s.p. spectra w.r.t. SRG

Cutoff dependence is reduces, indicating good convergence of many-body truncation and many-body forces

NN terms (no induced 3NF) $\leftarrow \rightarrow N N+3 N F$ fully included

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and arXiv:1412.0491 [nucl-th] (2014)

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) and arXiv:1412.0491 [nucl-th] (2014)

\rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen
\rightarrow cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

Results for the oxygen chain

A. Cipollone, CB, P. Navrátil, arXiv:1412.0491 [nucl-th] (2014)

\rightarrow Single particle spectra slightly diluted and
\rightarrow systematic underestimation of radii

The sd-pf shell gap

Neutron spectral distributions for ${ }^{48} \mathrm{Ca}$ and ${ }^{56} \mathrm{Ni}$:
$2 N+3 N F$ (induced)

$2 N+3 N F(F U L L)$

- sd-pf separation is overestimated even with leading order N2LO 3NF
- Correct increase of $p_{3 / 2}-f_{7 / 2}$ splitting (see Zuker 2003)

CB et al., arXiv:1211.3315 [nucl-th]

	2NF only	2+3NF(ind.)	2+3NF(full)	Experiment
${ }^{16} \mathrm{O}:$	2.10	2.41	2.38	$2.718 \pm 0.210[19]$
${ }^{44} \mathrm{Ca}:$	2.48	2.93	2.94	$3.520 \pm 0.005[20]$

UNIVERSITY OF
SURREY

Neutron spectral function of Oxygens

Suncrive

Z/N asymmetry dependence of SFs - Theory

Ab-initio calculations explain the Z / N dependence but the effect is much lower than suggested by direct knockout

Effects of continuum become important at the driplines

arXiv:1412.0491 [nucl-th] (2014)

Spectroscopic factor are strongly correlated to p-h gaps:

ZNN asymmetry dependence of SF's - Theory

Ab-initio calculations explain the Z / N dependence but the effect is much lower than suggested by direct knockout

Effects of continuum become important at the driplines

arXiv:1412.0491 [nucl-th] (2014)

[Hagen et al.
Phys. Rev. Lett. 107, 032501 (2011)]

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]
\rightarrow Analysis of ${ }^{14} \mathrm{O}(d, t)^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right)^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

- Overlap functions and strengths from GF
- Rs independent of asymmetry

Mapping Ab-Initio calculation into the shell model approach

Recent works through CCM and IMRSG:

Bogner et al Phys. Rev. Lett. 113, 142501 (2014) Jansen et al Phys. Rev. Lett. 113, 142502 (2014)
\checkmark works well for spectra

Calculation of observables: need many-body corrections, to evolve operators, add electroweak currents, ect...

See Menendez , Stroberg, Pastore and other talks today...

To have a look at the many-body and effects:

Extract vibration coupling form microscopic calculations...
$C B, T$. Otsuka, in preparation

"traditional" MBPT approach

PT expansion of effective interactions:

Effective charges (estimate form many-body effects):

SURREY

Some results - ANi chain in pfgor/2 shell

Interaction: NNLO-opt, AV18 (+Gmatrix)
Single particle basis: HF
Preliminar

$B E(2)$ charges

Some results - ANi chain in pfgg/2 shell

Interaction: NNLO-opt, AV18 (+Gmatrix)
Single particle basis: HF

Averaged charges

\rightarrow "predicted" charges are smaller than usual phenomenological ones
\rightarrow NO higher
order currents here -- just the many-body correction...

BE(2) charges

Some results - O and C chains

Interaction: N3LO(500) (+Gmatrix)

Single particle basis: HF or HFB
$B E(2)$ charges

	C 10	C 22	O 14	O 16	O 20
$\nu_{s 1 / 2}-\nu_{d 3 / 2}:$	0.142	0.094	-0.751	0.160	0.128
$\nu_{s 1 / 2}-\nu_{d 5 / 2}:$	0.226	0.125	0.261	0.214	0.181
$\nu_{d 3 / 2}-\nu_{d 3 / 2}:$	0.278	0.121	0.198	0.082	0.155
$\nu_{d 3 / 2}-\nu_{d 5 / 2}:$	0.320	0.137	0.249	0.274	0.214
$\nu_{d 5 / 2}-\nu_{d 5 / 2}:$	0.278	0.151	0.294	0.250	0.232
$\pi_{s 1 / 2}-\pi_{d 3 / 2}:$	1.131	1.051	0.594	1.105	1.078
$\pi_{s 1 / 2}-\pi_{d 5 / 2}:$	1.155	1.094	1.161	1.142	1.134
$\pi_{d 3 / 2}-\pi_{d 3 / 2}:$	1.061	1.054	1.441	0.976	1.070
$\pi_{d 3 / 2}-\pi_{d 5 / 2}:$	1.141	1.107	1.042	1.091	1.170
$\pi_{d 5 / 2}-\pi_{d 5 / 2}:$	1.161	1.077	1.139	1.107	1.099
$\nu_{p 1 / 2}-\nu_{p 3 / 2}:$	0.359	0.319	0.344	0.401	0.404
$\nu_{p 3 / 2}-\nu_{p 3 / 2}:$	0.315	0.247	0.367	0.316	0.307
$\pi_{p 1 / 2}-\pi_{p 3 / 2}:$	1.102	1.134	1.183	1.179	1.198
$\pi_{p 3 / 2}-\pi_{p 3 / 2}:$	1.128	1.103	1.075	1.056	1.082

\rightarrow "predicted" charges are smaller than usual phenomenological ones
\rightarrow NO higher order currents here -- just the many-body correction...

Conclusions

- What to did we learn about realistic chiral forces from ab-initio calculations?
\rightarrow Leading order 3NF are crucial to predict many important features that are observed experimentally (drip lines, saturation, orbit evolution, etc...)
\rightarrow Experimental binding is predicted accurately up to the lower sd shell (A~30) but deteriorates for medium mass isotopes (Ca and above) with roughly 1 MeV/A over binding.
\rightarrow more short-range repulsion or fitting to mid masses will help [see NNLOsat talk, atc...].

Thank you for your attention!!!!

Collaborators

SUNRRSEY

\qquad cea

TRIUMF
(U) $\mathrm{B}=$

B Universitat de Barcelona
Washington
University in St.Louis
AN Center for Malecular Modeling

A. Cipollone, A. Rios
V. Somà, T. Duguet
A. Carbone
P. Navratil
A. Polls
W.H. Dickhoff, S. Waldecker
D. Van Neck, M. Degroote
M. Hjorth-Jensen

