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Where do we draw the line? How can we take advantage of moving the line?
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Why should we care what happens to UV physics?
Evolution of Hamiltonians and other operators

Where does UV physics go as we lower a cutoff?
When do many-body terms become important?
Flow to universal Hamiltonians: can we exploit it?

Using the EFT cutoff (⇤) scale: Naturalness?
Bayesian priors for fitting LECs?
What is learned from regulator cutoff variation?

Which is better: EFT at lower cutoff or SRG?
Is SRG decoupling the same as cutting off?
Does it matter how we cut off UV physics?

UV basis extrapolation; e.g., for SRG-evolved potentials
Universal/dual aspects of UV vs. IR? What’s different?

Knock-out experiments: short-range correlations and all that
What role do the UV parts of wave functions play?
What factorization (separation) scale should we use?

Plan: random walk through these topics (mostly questions!)



What does changing a cutoff do in an EFT?
(Local) field theory version in perturbation theory (diagrams)

Loops (sums over intermediate states)
�⇤c() LECs

d
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Momentum-dependent vertices =) Taylor expansion in k2

Claim: V
low k RG and SRG decoupling work analogously
“V

low k ” SRG (“T” generator)
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Approach to universality (fate of high-q physics!)
Run NN to lower � via SRG =) ⇡Universal low-k VNN

q � �

V�

V�

k < �

k0 < �

=) C0 + · · ·

q � � (or ⇤) intermediate states
=) replace with contact terms:

C0�3(x� x0) + · · ·
[cf. L
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= · · · + 1
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U�!K ·Q�! K (k)[
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Q(q)V�(q, q0)Q(q0)]K (k 0) with K (k) ⇡ 1!
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NN V
SRG

universality from phase equivalent potentials
Diagonal elements collapse where phase equivalent [Dainton et al, 2014]
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Are inverse scattering potentials sufficient? [Dainton et al]

Create a separable potential that is phase equivalent to AV18:

For the diagonal elements, yes, this is sufficient!



Are inverse scattering potentials sufficient? [Dainton et al]
Create a separable potential that is phase equivalent to AV18:

But for off-diagonal, need half-on-shell T-matrix (HOST) equivalence



Are inverse scattering potentials sufficient? [Dainton et al]
Create a separable potential that is phase equivalent to AV18:

With HOST equivalence, even delta shell potential plus OPE is sufficient!



Use universality to probe decoupling

What if not phase equivalent
everywhere?

Use 1P1 as example
(for a change :)

Result: local decoupling!
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Is there 3NF universality?

Evolve chiral NNLO EFT potentials in momentum plane wave basis
to � = 1.5 fm�1 [K. Hebeler, Phys. Rev. C85 (2012) 021002]

In one 3-body partial wave, fix one Jacobi momentum (p, q)
and plot vs. the other one:
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Is there 3NF universality?

Evolve in discretized momentum-space hyperspherical harmonics
basis to � = 1.4 fm�1 [K. Wendt, Phys. Rev. C87 (2013) 061001]

Contour plot of integrand for 3NF expectation value in triton

Local projections of 3NF also show flow toward universal form

Can we exploit universality à la Wilson? Stay tuned!



What else can we say about the flow of NN· · · N potentials?
Can arise from counterterm for new UV cutoff dependence,
e.g., changes in ⇤c must be absorbed by 3-body coupling D0(⇤c)

d
d⇤c



+

| {z }
/(C0)4 ln(k/⇤c)

+

| {z }
D0(⇤c)/(C0)4 ln(a0⇤c)

�
= 0

RG invariance dictates 3-body coupling flow [Braaten & Nieto]

General RG: 3NF from integrating out or decoupling high-k states

⇡, ⇢, !
�, N⇤

⇡, ⇢, !

⇡, ⇢, !

⇡, ⇢, !

N

low+ resolution

⇡ ⇡ ⇡

c1, c3, c4 cD cE



What do we know about the growth of NN· · · N potentials?
Many interesting results have appeared, prompting questions . . .

Early results in lightest systems [Jurgenson et al. (2009)]:
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How does this hierarchy evolve with A?



What do we know about the growth of NN· · · N potentials?
Many interesting results have appeared, prompting questions . . .

Team Roth: 4-body depends on cutoff on c3 term.
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How do we determine consistent regulators in this case?
Does local versus non-local cutoff function matter?



What do we know about the growth of NN· · · N potentials?
Many interesting results have appeared, prompting questions . . .

Ratio of 3NF to NN in neutron matter [Hebeler, rjf (2013)]
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What do we know about the growth of NN· · · N potentials?
Many interesting results have appeared, prompting questions . . .

Nuclear matter scaling: use NN results at saturation =) hV3i/hV2i
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⇤1/3 ⇠ O(1) [where did ⇢/f 2

⇡⇤ come from?]

Current answer: not enough yet! But tools in place to make progress!
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How big should different contributions be?

Enable chiral EFT power counting =) NDA and naturalness

L� eft

= clmn

✓
N†(· · · )N

f 2
⇡⇤�

◆l ✓
⇡

f⇡

◆m ✓@µ,m⇡

⇤�

◆n

f 2
⇡⇤2

� f⇡ ⇠ 100 MeV

Georgi (1993): f⇡ for strongly interacting fields; rest is ⇤�

Cohen et al. (1997). Uncanonical scaled EFT action at ⇤:

S⇤ =
1
g2

Z
d4x bL⇤

✓
⇡0

⇤
,

N 0

⇤3/2 ,
@
⇤

◆
“natural” if loops  trees

NDA: that bound is saturated: g ⇠ 4⇡ with ⇤ ⇠ ⇤�

Rescale to canonical kinetic normalization =) NDA

Claim: should match choosing ⇤ ⇠ ⇤� scale =) NDA estimates

⇤� is not itself an adjustable cutoff but a physics scale
e.g., from non-Goldstone-boson exchange such m⇢

Need calculations for quantitative ⇤�

Other refs: Dugan and Golden (1993), Friar (1997)



How big should different contributions be?

Enable chiral EFT power counting =) NDA and naturalness

L� eft

= clmn

✓
N†(· · · )N

f 2
⇡⇤�

◆l ✓
⇡

f⇡

◆m ✓@µ,m⇡

⇤�

◆n

f 2
⇡⇤2

� f⇡ ⇠ 100 MeV

E.g., check NLO, NNLO constants from LNN [Epelbaum et al.]
Take ⇤� =) cutoff ⇤: 500. . .600 MeV):

f 2
⇡ CS �1.079 . . .� 0.953 f 2

⇡ CT 0.002 . . . 0.040
f 2
⇡⇤

2
� C1 3.143 . . . 2.665 4 f 2

⇡⇤
2
� C2 2.029 . . . 2.251

f 2
⇡⇤

2
� C3 0.403 . . . 0.281 4 f 2

⇡⇤
2
� C4 �0.364 . . .� 0.428

2 f 2
⇡⇤

2
� C5 2.846 . . . 3.410 f 2

⇡⇤
2
� C6 �0.728 . . .� 0.668

4 f 2
⇡⇤

2
� C7 �1.929 . . .� 1.681

1/3 . clmn . 3 =) natural! =) truncation error estimates

If unnaturally large, signal of missing long-distance physics
(e.g., � in ci ’s) or over-fitting

f 2
⇡CT unnaturally small =) SU(4) spin-isospin symmetry



How big should different contributions be?

Enable chiral EFT power counting =) NDA and naturalness

L� eft

= clmn

✓
N†(· · · )N

f 2
⇡⇤�

◆l ✓
⇡

f⇡

◆m ✓@µ,m⇡

⇤�

◆n

f 2
⇡⇤2

� f⇡ ⇠ 100 MeV

Applications to coefficients in relativistic and Skyrme density functionals
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Identify unnaturally large and small Skyrme coefficients

Guide fitting attempts with generalized EDF’s?



How big should different contributions be?

Enable chiral EFT power counting =) NDA and naturalness
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Old chiral NDA analysis for EDFs:
[Friar et al., rjf et al.]
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What is the breakdown scale? Not clear for �EFT! How do we analyze?



Error (“Lepage”) plots revisited [Lepage (1997); Steele, rjf (1999) ]

What is the evidence that the EFT is working as it should and we’re
not just fitting (or over-fitting) elephants with many parameters?

Slope of error curve with energy should increase with EFT order

Breakdown scale (⇤�) where error curves intersect or where error
stops improving (stabilized prediction)

Can we apply to observables other than phase shifts?
Investigations with toy models in progress [S. Wesolowski]

What about error bands from regulator cutoff ⇤ variations?



How should we fit the LECs? Constrained curve fitting
A new era for fitting and testing chiral Hamiltonians [see A. Ekstrom]

Deficiencies revealed; more advanced interactions coming

Practical/theory motivations for Bayesian priors [Lepage (2001)]:

Constraints consistent with Lepage plots (can be tricky)
Would like to be independent of where we stop fitting (E , order)
Want the theory error at each order incorporated appropriately
Do not want constants to play off each other

Bayesian fits in 30 seconds. Suppose we have parameters
a = {a0, a1, · · · , aM}, a data set d = {d1, d2, · · · , dN}, and a theory f .

Goal: what a to use (with error) given a data set d =) pr(a|d, f )
Known: given a, what is the chance we get d =) pr(d|a, f )

Joint probability pr(d, a) can be decomposed into conditional
probabilities two ways (and so are equal):

pr(a|d, f )pr(d|f ) = pr(d|a, f )pr(a|f ) e.g., pr(d|a, f ) /
NY

k=1

e��2/2

Now just put pr(d|f ) on the other side. The “priors” are pr(a|f ).



“Prior” work by Schindler/Phillips: naturalness as a prior
“Bayesian Methods for Parameter Estimation in Effective Field Theories”

Test application to chiral perturbation theory

M coefficients naturalness values in normal distribution

pr(a|M,R) =

 
MY

i=0

1p
2⇡R

!
e� 1

2
PM

i=0 a2
i /R2

=) R is width

In progress: revisit by S. Wesolowski, D. Phillips, rjf for NN· · · N

Is normal distribution for natural
a = {ai} appropriate given we
expect 1/n < ai < n?

Maybe log normal distribution
instead for |ai |

f (x ;µ,�) = 1
x

1p
2⇡

e� (ln x�µ)2

2�2 , x > 0 .

How does this prior relate to weighting by the order of expansion?



“Prior” work by Schindler/Phillips: naturalness as a prior

Schindler/Phillips toy
problem: find M lowest-order
coefficients in expansion of

g(x) =
✓

1
2
+ tan(⇡

2
x)
◆2

=
1X

i=0

aix i

⇡ 0.25 + 1.57x + 2.47x2 + 1.29x3 + · · ·

by ordinary “�2” fitting and
using Bayesian priors on the
“naturalness” of coefficients.

Coefficients are of order
unity: 1/4 < ai < 4

Limited measurements and
experimental noise

Goal: determine a0 and a1

Usual �2 fit

M �2 a0 a1 a2

1 2.49 0.22±0.02 2.47±0.11
2 0.85 0.29±0.02 1.04±0.40 4.91±1.31
3 0.85 0.26±0.04 2.00±1.12 -2.55±8.27
4 0.60 0.18±0.07 5.74±2.81 -50.4±34.0
5 0.57 0.28±0.14 0.24±7.08 46.9±120.0

With natural prior

M a0 a1 a2

1 0.23±0.14 2.42±0.11
2 0.27±0.03 1.50±0.35 3.21±1.21
3 0.27±0.03 1.54±0.33 2.80±1.19
4 0.27±0.03 1.54±0.35 2.76±1.18
5 0.28±0.05 1.57±0.21 2.79±1.11

=) marginalize over M and log
normal parameters

Controlled fitting protocol needed for consistent “running” of EFT
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Is there a motivation for lower EFT cutoffs?
Recent examples of calculations with soft EFT interactions

Nuclear matter calculations with soft smooth cutoff EFT
potential [Corraggio et al., arXiv:1402.0965]
Lattice chiral EFT: coarse lattices =) low ⇤ cutoff

=) but many successes [see D. Lee]

How is an EFT at two different scales related to an RG running
via SRG or Vlowk?

First, distinguish breakdown ⇤� from regulator ⇤

For matching, choose ⇤ ⇠ ⇤� for Weinberg counting
Integrating out momenta in a local EFT (à la Georgi)

Integrate out momenta =) non-local action
Derivative expansion and drop higher terms =) back to local
Requires sufficient scale separation or error grows from
dropped terms
cf. SRG =) error is unchanged with softening
But what is happening if we instead refit the EFT?

Which is better in practice? We need more comparisons!



Does it matter how we cutoff UV physics?
Perhaps not in principle, but certainly in practice!
What form does the T-generator SRG cutoff take?

Decoupling (roughly) imposes off-diagonal form for V�(k , q)

V�(k , q)
q�k�! V�(0, q) ⇠ V1(0, q) e�(q4/�4)

Test with a simple variational ansatz (from k -space S-eqn)

u(k) = 1
(k2 + �2)(k2 + µ2)

e�(k4/�4) w(k) = ak2

(k2 + �2)(k2 + ⌫2)2 e�(k4/�4)

error in deuteron energy for
different initial potentials

small � works pretty well

V
low k works even better!
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What if we “lower” cutoff by a truncated oscillator basis?
[Work by S. Bogner, S. Koenig, S. More, T. Papenbrock, rjf . . . ]

S. Coon: Finite oscillator basis imposes both IR and UV cutoffs

Nature of UV vs. IR cutoff in light of dual nature of HO
Low-momentum (IR) spectrum is the same as hard-wall at

L� =
p

2(N
max

+ 3/2 + �)b
osc

with b
osc

⌘
p
~/(µ⌦)

with � = 2 [see T. Papenbrock]
Duality =) short distance (UV) same as hard wall in
momentum with b

osc

! ~/b
osc

in L2 =) we expect

⇤� =
p

2(N
max

+ 3/2 + �)~/b
osc

with � = 2

Analytic result for separable potential with hard cutoff ⇤:

V�(k , k 0) = gf�(k)f�(k 0) with f�(k) = e�(k/�)n
=) �E ⇤���! C

Z 1

⇤
dk f 2

�(k)

Expect asymptotic form of energy correction for SRG or smooth
V

low k to (roughly) follow this form (with additional ⇤ dependence)



Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

=) �Ed/Ed for different cutoff forms; hard wall is n =1



Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

=) �Ed/Ed for ⇤0; looks like n =1 but noticable scatter



Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

=) �Ed/Ed for ⇤2; looks like n =1 and no scatter



Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

For ⇤ > �, �Ed/Ed / g(⇤)e�2(⇤/�)4
(??)



Examples for deuteron and RG-evolved potentials
[Thanks to K. Wendt for generating deuteron energies in IR-converged spaces]

For ⇤ <⇠ �, �Ed/Ed / e�4(⇤/�)2
(roughly), as used empirically



SRG/Vlowk wave functions versus “measured” SRCs
Universal aspects of UV and IR truncations?

IR dictated by asymptotic many-body wave function
=) break-up channels =) depends only on observables
=) independent of RG running (and intial potential)
UV depends on potential; e.g., changes with RG running
because UV potential and wave function do
But expect similar (scaled) �E for A > 2

Similar to discussions of short-range correlation physics
Frankfurt/Strikman arguments on asymptotic k -space wf
E.g., T. Neff et al. 2-body S = 0, T = 1 densities:

T. Neff et al. calculationsIntroduction Unitary Transformations 4He Results 4He,6Li,10B,12C Results Summary

Two-body densities in coordinate space for A=2,3,4
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two-body densities calculated from exact
wave functions (Correlated Gaussian
Method) for AV8’ interaction
coordinate space two-body densities
reflect correlation hole and tensor
correlations
� normalize two-body density in
coordinate space at r=1.0 fm
� normalized two-body densities in
coordinate space are identical at short
distances for all nuclei
also true for angular dependence in the
deuteron channel

Thomas Neff TRIUMF 2013

T. Neff et al. calculationsIntroduction Unitary Transformations 4He Results 4He,6Li,10B,12C Results Summary

Two-body densities in momentum space for A=2,3,4
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use normalization factors fixed in coordinate space

two-body densities in momentum space identical for momenta k > 3fm�1

moderate nucleus dependence in momentum region 1.5fm�1 < k < 3fm�1

Feldmeier, Horiuchi, Neff, Suzuki, PRC 84, 054003 (2011)

Thomas Neff TRIUMF 2013



Is any of this UV physics “measurable”? [see rjf, 1309.5771]

Relevant to knock-out experiments of various types

Issues of scale and scheme dependence (RG invariants?)

We have (implicitly or explicitly) established a separation or
factorization scale when we calculate observables
If sufficient separation of scales, then impulse approximation can be
good, and no ambiguities.
Generally scale dependent, e.g. parton vs. momentum distributions:
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Which scale to use for experiment? Clear for QCD (gauge theory) but EFT?



Start with simplest problem: deuteron electrodisintegration
In progress by S. More, K. Hebeler, rjf

Current projects:
Sushant More (OSU, graduate student)

Deuteron photodisintegration at low resolution

A
A

e

e0

N

N

�2

k
k0

q
p0

1

p0
2

p0
1

p0
2p1

p2

p00
2

p00
1

Standard story for (e, e �p) [from C. Ciofi degli Atti]

In IA: “missing” momentum pm = k1 and energy Em = E

Choose Em to select a discrete final state for range of pm

FSI treated as managable add-on theoretical correction to IA• cross sections: convolution reaction   structure,
sep. contributions are not unique, only combination!

• contributions from short range correlations also 
scale and scheme dependent!

• evolution to low resolutions (operators and wave 
functions!) is expected to significantly simplify calculations!

⌦

These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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Fig. 2. The fractions of correlated pair combinations in carbon as obtained from the (e,e'pp) and (e,e'pn)
reactions, as well as from previous (p,2pn) data. The results and references are listed in table S1.

Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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Build on Yang and Phillips EFT calculations, but beyond the EFT
(“high-resolution probes of low-resolution nuclei”)
Old field redefinition arguments of Hammer, rjf; also with U�(k , q)

⇥ ⌦ ⇥ ⇥

Understand mixing of structure, FSI, and currents (can’t isolate!)
Can we make money on factorization?



Additional comments (prejudices) on UV physics

The fate of UV physics cuts across and unites many topics
Calculational methods with microscopic forces are maturing

Deficiencies of current Hamiltonians clearly revealed
Opportunities: revisit old EFT technology while inventing new
Structure component ahead of reactions but RG can shift
between; treating one in isolation can be dangerous

Knock-out experiments need to be understood better
EFT and RG provide tools to do this
Different factorization scale for expt. analysis and calculation?

Don’t be too narrow with ”ab initio” for microscopic NN· · · N forces
Use sounds provincial in light of QCD
Low-energy paradigm: tower of effective theories (or turtles)

Where should we think about the next rung on the EFT tower?
pionless EFT for halo nuclei
low-lying excitations in deformed nuclei [see T. Papenbrock]
DFT? [e.g., J. Dobaczewski et al.; revisit Landau-Migdal?]
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