

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Measuring ground state nuclear properties at TRIUMF

TRIUMF

February 21, 2014

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienni

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Measurement of the interaction between a nucleus and its environment can yield

- Nuclear spin, I
- \circ Magnetic dipole moment μ
- Electric quadrupole moment Qs
- Change in RMS charge radii $\delta \langle r^2 \rangle$

(calculated from the isotope shift)

$$\langle \beta_2^2 \rangle \neq \langle \beta_2 \rangle^2$$

Interaction between an implanted nucleus and the crystal around it is given by

$$H = -m\frac{\mu}{I}H_{o} + \frac{e^{2}qQ}{4I(2I-1)}\left[\hat{I}_{z}^{2} - \hat{I}^{2} + \eta\left(\hat{I}_{x}^{2} - \hat{I}_{y}^{2}\right)\right]$$

where $\eta = \frac{V_{XX} - V_{YY}}{V_{ZZ}}$

Interaction between an implanted nucleus and the crystal around it is given by

$$H = -m\frac{\mu}{l}H_{o} + \frac{e^{2}qQ}{4l(2l-1)}\left[\hat{l}_{z}^{2} - \hat{l}^{2} + \eta\left(\hat{l}_{x}^{2} - \hat{l}_{y}^{2}\right)\right]$$

where $\eta = rac{V_{XX} - V_{YY}}{V_{ZZ}}$

To measure μ arrange for $e^2q=0$

$$H = -m\frac{\mu}{I}H_o$$

To measure Q reduce H_o to zero

$$H = \frac{e^2 q Q}{4I(2I-1)} \left[3m_I^2 - I(I+1) \right]$$

In practice

In practice

Inside the vacuum system

 50Ω RF transmission line

Non resonant \Rightarrow no tuning !!!

Pictures courtesy of G.D. Morris

Q_{11}/Q_{9}	1.0775(12)
Q_9/Q_8	0.96675(9)

Voss et al. J. Phys. G. 41 015104 (2014)

$$\begin{split} \Delta E_{hls} &= A \frac{K}{2} \\ &+ B \frac{\frac{3}{2}K(K+1) - 2l(l+1)J(J+1)}{4l(2l-1)J(2J-1)} \\ K &= F(F+1) - J(J+1) - l(l+1) \\ A &= \mu_N g_l \frac{B_{el}}{J} \qquad B = eQ_s \langle \frac{\delta^2 V}{\delta z^2} \rangle \end{split}$$

A photon has angular momentum 1 therefore can induce

transitions $\Delta F = 0, \pm 1 \pmod{0} \rightarrow 0$

Atomic Hyperfine structure

Isotope shift of an atomic transition

Two components: mass shift (nuclear recoil) and volume shift

Analysis of volume shift yields the change in nuclear mean square charge radius, $\delta < r^2 >$

Nuclear size, deformation

 $\delta \langle r^2
angle = \delta \langle r^2
angle_{
m sph} + \langle r^2
angle_{
m sph} rac{5}{4\pi} \delta \langle eta_2^2
angle_{
m volume}$

dynamic deformation

Collinear fast beam spectroscopy

Collinear fast beam spectroscopy

Peak width \sim 50MHz, Doppler width \sim 1,000MHz

OTRIUMF

light Rb Data

Francium

PRELIMINARY deformations

Bohr Weißkopf effect

$$\begin{aligned} A &= A_{pt}(1+\epsilon) \\ \frac{A}{A'} &= \frac{A_{pt}(1+\epsilon)}{A'_{pt}(1+\epsilon')} \approx \frac{A_{pt}}{A'_{pt}}(1+\epsilon-\epsilon') = \frac{A_{pt}}{A'_{pt}}(1+\Delta) \end{aligned}$$

Figure courtesy of J.A. Behr

- $\circ~\beta$ -NQR on heavy Mg isotopes out to at least $^{33}{\rm Mg}$
- Laser spectroscopy on neutron rich AL isotopes to investigate deformation and possible isomers in the island of inversion
- $\circ\,$ RMS charge radius of ^{62}Ga for TRIUMF's super allowed $\beta\text{-decay}$ programme
- Investigation of highly deformed states in neutron deficient Y and Sr isotopes
- Evolution of the shell structure in neutron rich Ca isotopes

Canada

- TRIUMF
- University of British Columbia
- McGill University
- University of Manitoba

Rest of America

- University of Maryland
- William and Mary
- Stony Brook University
- San Luis Potosi

Europe

- University of Jyväskylä
- University of Liverpool
- The University of Manchester