Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Gamma rays in light nuclei: what we have learned and can learn at TRIUMF

Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives

TRIUMF, 2014-02-20

Greg Hackman | TRIUMF

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Acknowledgements and Thanks

Lots of credit to go around Thanks to the people from who've shared slides and results: Nico Orce, Elaine Kwan, Fred Sarazin, Ching-Yen Wu, Phil Voss

Theory & Experiment Move Forward

Advances in theoretical techniques allow precise calculations for light nuclei

- No-core shell models (P. Navratil et al.)
- Green's-function Monte Carlo Phenomenological potentials
- Effective field theories
- Three-body forces
 but this isn't a theory talk
 (and I promise not to show any equipment either)

TRIUMF-ISAC has the tools

- World's highest ISOL power (M. Dombsky, P. Bricault) -- production
- TRILIS lasers (J. Lassen) ionization & extraction
- ISAC (R. Laxdal, M. Marchetto) -acceleration well above Coulomb barrier
- World-class charged-particle and gamma arrays (GH, C. E. Svensson, A.B. Garnsworthy, C.-Y. Wu)
- ... to test these calculations

What gamma rays can tell us

A nucleus was excited and then decayed

- Minimum 1 excited state in nucleus
- Some reaction or process excited that state
- Energy DIFFERENCE of states known
- Angular distribution depends on spins of states
- Polarization depends on parities

What we can use this for

- Reaction rates for excitation or to excited states may be measured from subsequent gamma yield
- Half-life for decays can be related to transition matrix elements
 - Which can then be related to shapes
- Selection rules, angular distributions can limit possible spins and parities of states

Excitation techniques

Inelastic scattering

- Separation > a few fm: Coulomb excitation: excitation by mutual electric fields
- On closer contact nuclear forces can result in:
 - Radiative capture
 - Nucleon or cluster transfer
 - Fusion-evaporation

Beta decay

- Strong selection rules
- Beta particle can be a tag for "start" of lifetime measurement by electronic instrumentation
- Level scheme can be deduced from energy differences
- Primarily probes structure of daughter

Technique: Coulomb Excitation

Near-barrier scattering

- ~1 to 6 MeV/A, depending on Z_p , Z_t
- Select E_{beam} for >1.5 fm closest approach for "nominal" nuclear radii eliminate – or at least limit – strongforce interaction
- Excited states in projectile or target nuclei couple to Coulomb repulsion field
- Excitation probability proportional to transition matrix element, increases with decreasing impact parameter *b*
 - Typically bin γ yield by θ_{p} , verify distribution matches theory

ISAC-II suitable for these experiments

• b evaluated from event kinematics

Transition Matrix Element in ¹¹Be

TRIUMF

E. Kwan, C.Y. Wu, N.S. Summers, G. Hackman, T.E Drake, C. Andreoiu, G.C. Ball, P. C. Bender, A.J. Boston, H.C. Boston, A. Chester, D. Cline, A. Close, D.S. Cross, R. Dunlop, A. Finley, A. Garnsworthy, A. B. Hayes, T. Nano, P. Narvátil, C. J. Pearson, J. Pore, K. Starosta, I.J. Thompson, P. Voss, S. J. Williams, Z.M. Wang

¹¹Be a "classic" exotic nucleus

- Weakly bound only 1 excited state
- Inverted ground state: ¹/₂+, not ¹/₂-
- Largest known E1 -- ~ 3 W.u.
 - (115 fs)
- One-neutron halo

$$\frac{0.3200}{\text{II}_{T}} = \frac{1/2^{-1}}{10^{10}} = \frac{0.503}{10^{10}} = \frac{1}{10^{10}} = \frac{1}{10^{1$$

I. Tanihata et al, PLB 206 (1988) 592

Поветили в совети и на селоти на

¹¹Be Wide range of both measurements and calculations for B(E1)

- Prior, only lifetimes and high-energy inelastic scattering data existed
- Low-energy Coulomb excitation affords high precision, limits nonelectromagnetic systematic errors

B(E1) (e ² fm ⁴)	Source	Ref.
0.116(12)	DSAM lifetime measurement	PRC 28, 497 (1983)
0.094(11) 0.079(8) 0.099(11) 0.105(12)	Intermediate-energy Coulomb excitation	PRC 56,R1 (1997) Ibid PLB 394, 11 (1997) PLB 650, 124 (2007)
0.15	Phenomenological cluster	NPA 596, 171 (1886)
0.006	Ab Initio No-core shell (wrong g.s.)	PRC 71, 044312 (2005)
0.018	No-core shell with resonating groups	PRL 101, 092501 (2008)

RIUMF Precision measurements of B(E1) Strengths in ¹¹Be

¹¹Be Wide range of both measurements and calculations for B(E1)

- Prior, only lifetimes and high-energy inelastic scattering data existed
- Some calculations couldn't even get ground state correct
- Low-energy Coulomb excitation affords high precision, limits nonelectromatgneitc systematic errors

TRIUMF Precision measurements of B(E1) Strengths in ¹¹Be

¹¹Be Coulomb excitation at 19, 23, 42 MeV on ¹⁹⁶Pt as a "standard candle"

- 300,000 particles per second world's most intense ¹¹Be beams
- Detect ¹¹Be in Si "CD"-style detectors
- Plotted here: Spectrum of measured scattered nucleus energies
- In principle this is enough
 - Kinematics (energy & direction of recoil) are enough to determine a reaction Q value to discriminate ¹¹Be, ¹¹Be*, ¹⁰Be
- In practice, cannot resolve 320 keV separation

ткіцмя Precision measurements of B(E1) Strengths in ¹¹Be

- Measure cross-section from gamma yield
 - ¹⁹⁶Pt excitation probability well known, de-excitation gamma ray has similar energy
 - Use ¹⁹⁶Pt target excitation
- Plotted here: Gamma ray energy spectrum observed at same time as a scattered Be
- Solid lines: Laboratory frame gamma spectrium
 - Lines emitted from scatterd Be are Doppler broadened
- Dashed lines are corrected for Doppler shift of recoiling ¹¹Be

B(E1) Strengths in ¹¹Be: 0.105(2) e²fm⁴

¹¹Be B(E1; $\frac{1}{2} \rightarrow \frac{1}{2}$): 0.105(2) e²fm⁴

- Semi-classical calculation at low scattering angles where continuum excitations are minimal
 - Angular distributions well reproduced
- Large-angle data will be used to disentangle continuum effects of 30%

B(E1) Strengths in ¹¹Be: 0.105(2) e²fm⁴

¹¹Be B(E1; ½⁻ → ½⁺): 0.105(2) e²fm⁴

- Measured in lowenergy (near-barrier) Coulomb excitation
- Uncertainty 2%
- Compare to 10% in DSAM, high-energy Coulex

Shape of ¹⁰Be

Structure of light nuclei: ¹⁰Be

Measurement of the Sign of the Spectroscopic Quadrupole Moment for the 2^+_1 State in ¹⁰Be: Testing *Ab Initio* Calculations

J. N. Orce,¹ M. K. Djongolov,¹ T. E. Drake,² P. Navrátil,³ C. Forssén,⁴ S. Triambak,¹ H. Al Falou,^{1,5} G. C. Ball,¹ R. Churchman,¹ A. B. Garnsworthy,¹ G. Hackman,¹ R. Kshetri,^{1,6} J. Lassen,¹ R. Li,¹ J. Meissner,¹ C. J. Pearson,¹ S. K. L. Sjue,¹ E. R. Tardiff,¹ A. Teigelhoefer,¹ S. J. Williams,¹ M. A. Stoyer,⁷ C. Y. Wu,⁷ P. Finlay,⁸ P. E. Garrett,⁸ K. G. Leach,⁸ E. Rand,⁸ C. S. Sumithrarachchi,⁸ C. E. Svensson,⁸ J. Wong,⁸ D. S. Cross,⁶ F. Sarazin,⁹ and A. B. Hayes¹⁰

GFMC AV18 + IL2 (3 body)

The Recoil Distance Method

Philip J. Voss WNPPC 2012

Doppler Shift methods for lifetime measurement

- Plunger method suitable down to picoseconds
- Could use thick degrader -> stopper
- A thick backing on a thin target or a thick excitation target – would give a continuum of Doppler shifts, rather than two distinct peaks
- This can be modeled and lifetimes measured from lineshape

Traditional DSAM results McCutchan, Lister et al., arXiv:0907.3688v1

RIUMF

- ¹⁰Be Doppler shift attenuation method measurement
- T_{1/2}(2⁺₁)=142± 3(stat.) ±7(syst.)fs
- Measured LIFETIME (<0||E2||2>)

The results

- Brown band: transitional matrix element, 3 previous lifetime measurements Most recent and
- Most recent and most important:
 E. A. McCutchan et al., Phys. Rev.
 Lett. 103, 192501 (2009).
- Lifetime alone doesn't indicate sign of M₂₂

Measuring Quadrupole Moments – Reorientation Effect

(2nd order effect in Coulomb excitation)

 $\sigma_{E2} = \sigma_R[k_1(\theta_{CM},\xi)B(E2)\left(1+k_2(\theta_{CM},\xi)Q_S(2_1^+)\right)]$

¹⁹⁴Pt(¹⁰Be,¹⁰Be*)¹⁹⁴Pt, 41 MeV

- laser ionized ¹¹Be accelerated to 41MeV
- beam intensity ~ 10⁷/s
 ¹⁰Be²⁺
- experiment ran for ~ 100 hr
- 3 mg/cm²¹⁹⁴Pt target
- 8 TIGRESS clover detectors
- Same setup as 11Be measurement from before

Doppler-corrected energy spectra with (black) and without(brown) a ¹⁰Be inelastic particle-coincidence condition

The results

 Precision gamma-ray measurements using Coulex techniques can be used to measure transition matrix elements to 2% or better, determine sign of diagonal matrix elements

Spins, Parities and States in ³²Na

- The "Island of inversion" (fp) orbitals intruding in (sd) shell due to the weakening of the N=20 shell closure → Deformation.
- ³²Mg, the archetypical "Island of Inversion" nucleus

RIUMF

- First indicator low E(2⁺) at 885keV [D.Guillemaud-Mueller et al., NPA 426 (1984) 37]
- large B(E2) in ³²Mg, remeasured many times since [T.Motobayashi et al., PLB 346 (1995)
 9]
- (fp) intruders one-neutron knockout reaction populating (fp) orbitals in ³¹Mg [J.R.Terry et al., PRC 77 (2008) 014316]
- 0⁺₂ (likely isomeric) state at 1058(2)keV observed in ³⁰Mg(t,p) [K.Wimmer et al., PRL 105 (2010) 252501]
- Additional levels (negative parity states) through β-decay of ³²Na [G.Klotz et al., PRC 47 (1993) 2502, C.M.Mattoon et al., PRC 75 (2007) 017302, V.Tripathi et al., PRC 77 (2008) 034310]
- State at 2321keV observed in many experiments with only tentative spin assignment, widely believed to be the 4⁺ state [see next slide]

Where is the 4⁺ state? Is it the 2321keV state?

Figure from V. Tripathi et al., PRC 77 (2008) 034310

- (a) G.Klotz et al., PRC 47 (1993) 2502
- (b) C.M.Mattoon et al., PRC 75 (2007) 017302
- (c) S.Nummela et al., PRC 64 (2001) 054313
- (d) F.Azaiez et al., Eur. Phys. J. A15 (2002) 93
- (e) D.Bazin et al., PRL 91 (2003) 012501
- (f) B.V.Pritychenko et al., PLB 461 (1999) 322
- (g) W.Mittig et al., Eur. Phys. J A15 (2002) 157
- (h) S.Takeuchi et al., J. Phys. Conf. Ser. 49 (2006) 153

E((4⁺),2321keV) / E(2⁺,885keV) = 2.62

Inconsistency

- Beta-decay measurements implied all ³²Mg states above 2+ were directly fed, therefore common negative parity
- Coulex and reactions proposed positive parities and range of spins
- At least one of them must be wrong ...
- Motivated 8pi experiment to study ³²Na decay to ³²Mg

Level scheme from recent β -decay studies

Tentative spin assignment based on MCSM calculations

removed parity constraint for possible 4+ candidate states

- Initial beta-decay measurements implied all ³²Mg states above 2+ were directly fed, therefore common negative parity
- New gamma branches allow indirect feeding of e.g. 2321 keV state
- Still don't know spins
 - 8pi, SEGA weren't sensitive enough
- GRIFFIN will allow us to determine spins from angular distributions

Angular correlation – $J^{\pi}(2321 \text{keV}) \rightarrow 2^+(885 \text{keV}) \rightarrow 0^+$ (gs)

Simulations based on 16 clovers and a realistic number of β - γ - γ coincidences to be collected during the proposed experiment (1.4x10⁵ β - γ , ~2% γ - γ efficiency, 10% feeding) \rightarrow A few thousands β - γ - γ coincidences \rightarrow A few hundreds events per data point (<10% error)

Other candidates for $\gamma - \gamma$ angular correlations

C.M.Mattoon et al., PRC 60 (2007) 017302

No direct feeding to gs, 2^+ states \rightarrow Comparison of intensity to 885keV (intensity: 100)

 Gamma ray measurements add to body of knowledge required to constrain (or remove constraints on) possible spins of observed states

- Gamma rays are key to controlling the "Pandemonium Effect" that was expected to confound high-precision branching ratio measurements with increasing mass
- Gamma tagging of excited states in transfer reactions resolves particle angular distributions where chargedparticle detection cannot
- Multi-crystal detector arrays like the ones at TRIUMF are also sensitive to gamma ray polarization – hence can give insight into parities as well as spins

 Results, slides, discussion taken from Fred Sarazin, Colorado School of Mines; Elaine Kwan, LLNL now NSCL; Ching-Yen Wu, LLNL; Nico Orce, TRIUMF now iThemba; Phil Voss, SFU

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you! Merci!

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's Simon Fraser | Toronto | Victoria | York

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada