

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

nuclear physics with TITAN

Precision mass measurements using ion traps for Nuclear Physics

J. Dilling

TRIUMF/University of British Columbia Vancouver, Canada

> Theory workshop @ TRIUMF February 18-21 2014

outline

- Rare beams at ISAC
- Mass measurements
 - Motivation
 - Ion traps
- Examples:

- Halos
- ^{20,21}Mg
- Island of Inversion measurements
- N-rich Ca isotopes
- Applications of mass measurements in nuclear-astro

ISAC rare isotope facility

How to get the rare isotopes... rare beam facilities

Isotope Separation On-Line (ISOL)

In-Flight Fragmentation / In-Flight Fission

TRIUMF's isotopes

Photo-fission products using 50 MeV 10 mA electrons on to Hg convertor & UC_x target.

ISAC rare isotope facility

Isotopes delivered at ISAC

RTRIUMF

- The target material determines what isotopes are produced.
- The atoms defuse out of the target essentially at rest.

 10^{7}

10⁵

The ion source is matched to the ionization energy, can be selective.

Nuclear physics via atomic mass measurements!

Light neutron rich isotopes:

a special breed: but difficult from an experimental point of few.

Ion Traps

a well developed tool to get answers : controlled & robust storage:

Precision and maniulation

RTRIUMF

Penning Trap: Single ion quantum manipulation

Cyclotron frequency: $v_c = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B$

Superposition strong magnetic field weak electrostatic quadrupole field

Mass measurement via the determination of the cyclotron-frequency: **Measurement is done with one ion in the trap,** repeat to scan over frequency range. Total number of ions for mass spectrum ~200.

Mass determination Time-of-Flight Ion Cyclotron Resonance (TOF-ICR)

G. Gräff et al. Z. Phys. A, 297 (1980)

RIUMF

Precision and accuracy PT are a widespread mature application

Since PT were developed for ions, they behave the same way for stable or unstable particles! Ideal for systematic test and optimizations

Verification of performance using stable masses (or standard ¹²C)

RTRIUMF

Fast and efficient (but keeping the precision)

$$\nu_{c} = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B \quad \delta m \approx \frac{1}{\nu_{c}} \propto \frac{1}{T_{RF}} \cdot q \cdot B \cdot \sqrt{N}$$

26

TOF>[us]

10

- Improve precision using different excitation mod Ramsey (gain factor ~2)
- Precision depends on v_c, boosting the frequency i key.
 - Can be done with higher excitation modes:
 - Octupole excitation: JYFLTRAP, LEBIT, SHIPTRAP: S. Eliseev et al., PRL. 107, 152501 (2011)
 - Using highly charged ions: developed at SMILETRAP, now also for radioactive beams: TITAN : S. Ettenauer et al., PRL 107, 272501 (2011)

Testing the theory (or provide extra input) stable Li as start: to check precision and accuracy

۴Li	Δ (keV)	δm/m
AME03	14086.793(15)	3×10 ⁻⁹
SMILETRAP	14086.880(37)	7×10 ⁻⁹
TITAN	14086.890(21)	4×10 ⁻⁹
NEW AME*	14086.881(15)	3×10 ⁻⁹

PHYSICAL REVIEW A, VOLUME 64, 062504

Atomic mass of ⁶Li using a Penning-ion-trap mass spectrometer

T. P. Heavner and S. R. Jefferts Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305

> G. H. Dunn JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440

- TITAN mass measurements for Li-6
- solved conflict with AME (SMILETRAP had found different value than JILA-trap)
- TITAN agrees with SMILETRAP value S. Nagy PRL 96, 163004
- TITAN now most precise value for new AME
- M. Brodeur et al, PRC 80 (2009) 044318

Lithium halo mass measurements

Fastest measurement due to rapid ion preparation with TITAN.

- TITAN mass measurement of ^{8,9,11}Li
- Improved precision, S_{2n} improved by factor 7
- Shortest-lived isotope (T_{1/2}=8.8ms) for Penning trap mass measurement!
- Final analysis $\delta m = 650 \text{ eV}$
- Agrees with MISTRAL and MAYA, but more precise.
- M. Smith et al PRL 101, 202501 (2008)
 - ─►new charge radius

RTRIUMF

Charge radius determination

Isotope shift measurements: ToPLiS (GSI) collaboration @ ISAC measured laser frequency shifts for the Lithium isotopes

G. W. Drake (Windsor) PRL. 100, 243002 (2008) atomic theory calculations for the mass shifts => extract the charge radius

Isotope shift = modification of electron binding energy =Mass Shift (mass effect) + Field shift (finite size of nucleus)

Requirements:

 Need precision of om ≤ 1 keV for charge radius calculations for atomic physics theory

R. Sánchez *et al.*, PRL 96, 033002 (2006) Nature Physics 2, 145 (2006) W. Nörtershäuers et al., Phys. Rev. C 84, 024307 (2011)

®TRIUMF Mass measurements of helium

RIVER TITAN harvest for very neutron-rich light isotopes

⁶Li: Brodeur et al, PRC 80 (2009) 044318 ⁶He: Brodeur et al, PRL 108, 052504 (2012) ⁹Li :Brodeur et al, PRL 108.212501 (2012) ⁸He: Ryjkov et al., PRL 101 (2008) 012501 ¹¹Li: Smith et al., PRL 101 (2008) 202501 ¹¹Be: Ringle et al., PLB 675 (2009) 170 ¹²Be: Ettenauer et al PRC 81, 024314 (2010) AME03: Audi *et. al.*, Nucl. Phys.A 729 (2003) 337

Mass measurements possible due to fastest on-line PT.

Reached highest precision for short-lived isotopes.

Limit of sensitivity ~ 5-10 ions / sec

Going heavier: A=20,21 Mg

RTRIUMF

R TRIUMF	Mass measurements at A=20,21
	Proton rich isotopes
	& some more tricks for clean beams

- Mass measurements of Mg masses Technical difficulty: ISOL production is not selective:
- isobars are co-produced with the isotopes of interest!
- Na, closer to stability, and longer-lived
- much more extracted and delivered to experiment (1.000.000-1 ratio)
- cleaning system required!

RIVALE Tricks for clean beams: Go to the source! Ion Guide Laser Ion Source (IG-LIS)

Repulsion of ions created inside the target (Shifting of target and repeller electrode potentials)

RF quadrupole ion guide for radial confinement of created ions

> Copper heat shield (water cooled)

Element selective laser ionization in cold environment

Laser radiation

Performance of the source: IG-LIS

Background reduction of 6 orders of magnitude!

Results of the mass measurements possible with the IG-LIS

Clean beam delivered to TITAN Excellent mass measurements possible, only minor background.

Results of the mass measurements

Direct data improved – but also use phenomenological isobaric multiplet mass equation (IMME), improved by TITAN

NN-only: over-bound

NN+3N: improved agreement with experiment/IMME

Adopted from J.Holt, Menendez, Schwenk, PRL (2013)

Mass values can be described by theory when including 3N forces. A. Gallant et al., submitted to PRL.

Island of Inversion mass cartography

Name arises from the *pf* orbitals which "intrude" into the *sd* shell

TITAN's campaign of mass measurements:

- Na: A = 29-31
- Mg: A = 30-34
- AI: A = 29-34

A.Chaudhuri et al, accepted in PRC; AAK et al, in preparation; figure from Himpe et al, PLB 658 (2008) 203

Island of Inversion mass cartography

Island of Inversion mass cartography Looking at the shell gap...

- ∆_n(³¹Na) = 1.79(23) MeV
- ∆_n(³²Mg) = 1.10(3) MeV<
- $\Delta_n(^{33}AI) = 1.82(7) \text{ MeV}$

lowest known of any magic nuclide

Limited guidance from theory:

- Models tend to overestimate "shell gap" Δ_n in ³²Mg
- Mean-field models predict shape incorrectly
- Only conventional shell model indicates breaking of N = 20 shell closure but it predicts Δ_n<0
- Out of reach for energy-density functional and *ab-initio* methods?

Island of Inversion mass cartography: The unusual case of the cross-over.

A.A. Kwiatkowski et al., submitted to PRL

N-rich Ca isotopes

Extension of theory approach to heavier isotopes: n-rich Ca

Theory with realistic NN interaction & 3N forces:

- substantially different trend for single-particle energies and separation energies
- quenching of N=28 shell gap around A=50-54
- New magic shell closure at

N=32/34?

Mass measurement of ^{51,52}Ca with TITAN

→ confirms theoretical trends

Experiments agrees well with this theory, but also with others (CC-theory PRL 109, 032502).

Further extension to ⁵⁴Ca with ISOLTRAP

Old Measurements AME11

A.T. Gallant, PRL 109, 032506 (2012)

Wienholtz et al., Nature (2013) ISOLTRAP/CERN

Mass measurements for Astrophysics

• Parameterized r-process model Following C. Freiburghaus et al., AstrophysJ 516, 381 (1999)

 Fluid element (p, n, Y_e) heated to high temperature 9GK

Undergoes rapid expansion at const. velocity, Y_e, S

- Model coupled to full reaction network (~5400 nuclei)
- For full range of entropies → isotopic abundance added up

- model inspired by conditions in high entropy winds from neutron stars in core collapse supernovae
- just 2 free parameters!

Solar system r-process abundance from C. Travaglio et al., AstrophysJ 601, 864 (2004)

V.V. Simon et al. PRC 85, 064308 (2012)

P. Hosmer et al., PRC 82, 025806 (2010)

r-process model calculations

- Include AME03 S_n values varied either 3σ up ('high') or down ('low')
 - found up to 6σ deviations in S_n to AME03
- S=100 component most affected

G. Audi, M. Weng, AME2010,pr. comm. (2010) U. Hager et al., PRL 96, 3 (2006) J. Hakala et al., EPJA 47, 129 (2011)

outlook

- Extend halo measurements
 - Be, C,...
- Island of Inversion
 - (complete the picture)
- N-rich isotopes (light/medium)
 - F, Ne,..Ar, K, Ca, Sc
- N-rich isotopes (heavier)
 - Cd, In,...¹³⁶Sn...
- In trap decay spectroscopy
 - Double beta decay studies

TITAN is fast (5ms) and sensitive (5-10 ions/s) and has capability to reach high resolution, precision and accuracy.

Thank You!

Thanks to the TITAN graduate students:

- S. Ettenauer* (Vanier & Killiam),
- A. Gallant (NSERC A.G. Bell fellowship),
- T. Macdonald
- V. Simon* (DAAD + Deutsche Studienstiftung),
- T. Brunner *(Villigst fellowship)
- U. Chowdhury, J. Bale
- B. Eberhard* (Deutsch Kanadische Gesellschaft)
- A. Lennarz (DAAD), R. Klawitter, A. Bader, D. Short

and the post docs:

- B. Schultz, A. Chowdhury,
- •A. Grossheim, A. Kwiatkowski, K. Leach

long term collaborators:

- D. Lunney (Orsay), R. Ringle (MSU), M. Brodeur (ND),
- D. Frekers (Muenster) G. Gwinner (Manitoba),
- C. Andreoiu (SFU)

theory colleagues:

S. Bacca (TRIUMF), A. Schwenk, J. Holt, J. Menendez (all TU Darmstadt) and B.A. Brown (MSU)

* Have graduated (now at Harvard, Stanford, and Mainz)

titan.triumf.ca

JDilling@triumf.ca

Yale

