Three-Nucleon Forces in the No-Core Shell Model with Continuum

Joachim Langhammer

TECHNISCHE UNIVERSITÄT DARMSTADT

Joachim Langhammer - TRIUMF Vancouver - February 2014

- What we are aiming for...
- Ingredients from Three-Body Technology
- Solution 31 States in the NCSM/RGM and NCSMC
 - How to access targets heavier than ⁴He
 - Continuum effects on the ⁹Be energy levels
 - First results: p-10C & n-16C scattering
- Conclusions

What we are aiming for...

Ingredients from Three-Body Technology

The Chiral NN+3N Hamiltonian

Weinberg, van Kolck, Machleidt, Entem, Meißner, Epelbaum, Krebs, Bernard, Skibinski, Golak...

- Hierarchy of consistent nuclear NN, 3N,... forces (and currents)
- NN interaction @ N³LO (Λ=500MeV) [Entem, Machleidt, Phys.Rev C 68, 041001(R) (2003)]
- Standard Hamiltonian
 - 3N interaction @ $N^2LO(\Lambda_{3N}=500MeV)$
 - LECs c_D, c_E fitted to β-decay halflife
 & binding energy of ³H
 [Gazit et.al., Phys.Rev.Lett. 103, 102502 (2009)]
- Reduced-Cutoff Hamiltonian
 - 3N interaction @ $N^2LO(\Lambda_{3N}=400MeV)$
 - c_D =-0.2, c_E fitted to ⁴He

The Similarity Renormalization Group

Wegner, Glazek, Wilson, Perry, Bogner, Furnstahl, Hergert, Calci, Langhammer, Roth, Jurgenson, Navrátil,...

...yields an evolved Hamiltonian with improved convergence properties in many-body calculations

• Unitary transformation of Hamiltonian $H_{\alpha} = U_{\alpha}^{\dagger}HU_{\alpha}$

Different SRG-Evolved Hamiltonians

- NN+3N-induced: start with NN initial Hamiltonian and keep two- and three-body terms
- NN+3N-full: start with NN+3N initial Hamiltonian and keep two- and three-body terms

3N Forces in the NCSM/RGM and NCSMC

How to Access Targets Heavier than ⁴He

G. Hupin, J. Langhammer et al. ----- Phys. Rev C 88 054622 (2013)
S. Quaglioni and P. Navrátil ----- Phys. Rev. Lett. 101, 092501 (2008)
P. Navrátil, R. Roth and S. Quaglioni ----- Phys. Rev. C 82, 034609 (2010)
S. Quaglioni, P. Navrátil, G. Hupin, J. Langhammer et al. ----- Few-Body Syst. DOI 10.1007/s00601-012-0505-0 (2012)
S. Quaglioni, P. Navrátil, R. Roth, W. Horiuchi ----- J.Phys.Conf.Ser. 402 (2012)

General Approach of NCSM/RGM

Wildermuth, Thompson, Tang, ..., Navrátil, Quaglioni, Roth, Hupin, Langhammer,...

• Represent $H|\psi^{J\pi T}\rangle = E|\psi^{J\pi T}\rangle$ using the **over-complete basis**

$$|\psi^{J\pi T}\rangle = \sum_{\nu} \int dr r^2 \frac{g_{\nu}^{J\pi T}(r)}{r} \mathcal{A}_{\nu} |\phi_{\nu r}^{J\pi T}\rangle$$

$$g_{\nu}^{J\pi T}(r)$$
 unknown

with the binary-cluster channel states

$$|\phi^{J\pi T}\rangle = \left\{ \left| \Phi^{(A-a)} \right\rangle \left| \Phi^{(a)} \right\rangle \right\}^{J\pi T} \frac{\delta(r - r_{A-a,a})}{r_{A-a,a}}$$

NCSM delivers
$$|\Phi^{(A-a)}\rangle$$
 and $|\Phi^{(a)}\rangle$

Solve generalized eigenvalue problem

$$\sum_{\nu} \int \mathrm{d} r r^2 \left[\mathcal{H}_{\nu,\nu'}^{J\pi T}(r',r) - E \mathcal{N}_{\nu,\nu'}^{J\pi T}(r,r') \right] \frac{g_{\nu r}^{J\pi T}}{r} = 0$$

Hamiltonian kernel $\langle \phi_{\nu'r'}^{J\pi T} | A_{\nu'} H A_{\nu} | \phi_{\nu r}^{J\pi T} \rangle \propto \langle \Phi^{(A-1)} | a^{\dagger}a^{\dagger}a^{\dagger}aaa | \Phi^{(A-1)} \rangle$ for single-nucleon projectiles and including 3N forces

Handling of Three-Body Density

Langhammer, Roth, Navrátil

Computing uncoupled densities on-the-fly ⇒ Key to access heavier targets than ⁴He

$$\begin{split} &\sum_{jj'} \sum_{M_1 m_j} \sum_{M_T_1 m_t} \sum_{M'_1 m'_j} \sum_{M'_{T_1} m'_t} \frac{1}{12} (-1)^{I_1 + I'_1 + 2J + j + j'} \begin{pmatrix} I_1 & \frac{1}{2} & s \\ l & J & j \end{pmatrix} \begin{pmatrix} I'_1 & \frac{1}{2} & s' \\ l' & J & j' \end{pmatrix} \\ & \left(\begin{array}{c} I_1 & j \\ M_1 & m_j \end{array} \middle| \begin{array}{c} J \\ M_J \end{array} \right) \begin{pmatrix} T_1 & \frac{1}{2} \\ M_{T_1} & m_t \end{array} \middle| \begin{array}{c} T \\ M_T \end{pmatrix} \begin{pmatrix} I'_1 & j' \\ M_T \end{pmatrix} \begin{pmatrix} I'_1 & j' \\ M'_1 & m'_j \end{array} \middle| \begin{array}{c} J \\ M'_j \end{pmatrix} \begin{pmatrix} T'_1 & \frac{1}{2} \\ M'_{T_1} & m'_t \end{array} \middle| \begin{array}{c} T \\ M'_T \end{pmatrix} \\ & \sum_{\beta_{A-3}} \sum_{\beta_{A-2}} \sum_{\beta'_{A-3}} \sum_{\beta'_{A-2}} \sum_{\beta'_{A-1}} \sum_{\beta'$$

 $_{a}\langle\beta_{A-3}\beta_{A-2}nlj'm_{j}^{\prime}\frac{1}{2}m_{t}^{\prime}|V_{3N}|\beta_{A-3}^{\prime}\beta_{A-2}^{\prime}\beta_{A-1}^{\prime}\rangle_{a}$

 $\langle \Phi'^{(A-1)}I'_{1}M'_{1}T'_{1}M'_{T_{1}}|a^{\dagger}_{nljm_{j}\frac{1}{2}}m^{\dagger}_{t}a^{\dagger}_{\beta_{A-2}}a^{\dagger}_{\beta_{A-3}}a_{\beta'_{A-3}}a_{\beta'_{A-2}}a_{\beta'_{A-1}}|\Phi^{(A-1)}I_{1}M_{1}T_{1}M_{T_{1}}\rangle$

• Use
$$|\Phi^{(A-1)}I_1M_1T_1M_{T_1}\rangle = \sum_i c_i |SD\rangle_i$$

Very-well suited for parallel computation

NCSMC Formalism with 3N Forces

• Representing $H|\psi^{J\pi T}\rangle = E|\psi^{J\pi T}\rangle$ using the **over-complete basis**

$$|\Psi^{J\pi T}\rangle = \sum_{\lambda} c_{\lambda} |\Psi_{A} E_{\lambda} J^{\pi} T\rangle + \sum_{\nu} \int dr r^{2} \frac{\chi_{\nu}(r)}{r} |\xi_{\nu r}^{J\pi T}\rangle$$

Expansion in A-body
(IT-)NCSM eigenstates Identical to the NCSM/RGM expansion

leads to the NCSMC equations

Ab-initio Description of ⁹Be via NCSMC

Collaboration with Petr Navrátil

- All excited states are resonances
- Study the impact of the continuum by investigating neutron-⁸Be scattering
- NCSM with 3N forces reveals large discrepancies compared to experiment

⁸Be N_{max} convergence of phase shifts

Collaboration with Petr Navrátil

⁸Be

n

⁸Be N_{max} convergence of phase shifts

Collaboration with Petr Navrátil

⁸Be

n

⁸Be SRG Parameter Dependence

Collaboration with Petr Navrátil

- Included states of ⁸Be: 0⁺ ground state & 2⁺ excited state
- Included states of ⁹Be: 6 negative parity states 4 positive parity states
- Negative parity: α=0.0625 and 0.08fm⁴
 phase shifts practically
 identical
- Positive parity: Larger deviations due to lack of N_{max} convergence

⁸Be

n

Monitoring the IT-NCSM Inputs

Collaboration with Petr Navrátil

- Eigenphase shifts obtained with NCSM or IT-NCSM eigenvectors are in very good agreement
- Small deviations in the 5/2⁻ and 7/2⁻ eigenphase shifts

^{ве} 3N Force Effects on Phase Shifts

Collaboration with Petr Navrátil

- Typically chiral 3N force shifts resonance positions to larger energies
- Narrow ²F_{5/2} phase shift not affected at all
- Overall larger effects of the chiral 3N forces for negative parity
- Only a minor change in the ²S_{1/2} resonance

⁸Be

n

⁹Be Energy Levels: NCSM vs. NCSMC

- Significant contributions from the continuum degrees of freedom
- Excellent agreement with experiment for 1/2⁻ & second 5/2⁻ as well as the 1/2⁺ and 3/2⁺ states
- NCSMC seems to be well-converged already at moderate Nmax loachim Langhammer - TRIUMF Vancouver - February 2014

⁹Be Energy Levels: NCSM vs. NCSMC

Collaboration with Petr Navrátil

Treatment of continuum important for conclusions about 3N interactions

- First 5/2⁻ insensitive to the chiral 3N interaction
- 7/2⁻ resonance → interaction problem? Joachim Langhammer - TRIUMF Vancouver - February 2014

19

-1.4893

 $^{10}C+p$

p⁻¹⁰C scattering: Structure of ¹¹N resonances

Collaboration with Petr Navrátil

 $(3/2^{-})$

 $(5/2^{-})$

 $(5/2^{-})$

 $3/2^{-1}$

 $5/2^{-1}$

 $1/2^{-1}$

 $J^{\pi} = 1/2^+$; T = 3/2

 ^{11}N

 $\frac{2.5174}{9}$ B+2p

p-¹⁰C scattering: Structure of ¹¹N resonances

p-¹⁰C scattering: Structure of ¹¹N resonances

Impact of the Continuum on ¹⁷C Energy Levels

Collaboration with Petr Navrátil

- NCSM yields the states unbound
- NCSMC binds the 1/2⁺ state and lowers the 3/2⁺ & 5/2⁺ states
- Convergence w.r.t N_{max} not yet reached

- NCSM binds 3/2⁺ & 5/2⁺ states
- NCSMC (over)binds all three states and provides their correct ordering
- N_{max} = 8 underway...

Conclusions

Conclusions

Nuclear structure and reactions accessible with full 3N treatment via the No-Core Shell Model with Continuum

- Inclusion of 3N forces challenging but completed for single- and two-nucleon projectiles
- ► New computational scheme → heavier targets accessible
- ▶ Promising results for n-⁸Be, p-¹⁰C and n-¹⁷C
- Proper treatment of continuum vital for validation of chiral 3N interactions

Epilogue

• thanks to my group & collaborators

S. Binder, A. Calci, E. Gebrerufael, H. Krutsch, S. Reinhard, R. Roth, M. Schmidt, S. Schulz, C. Stumpf, A. Tichai, R. Trippel, R. Wirth

- P. Navrátil TRIUMF, Vancouver, Canada
- G. Hupin, S. Quaglioni H. Feldmeier, T. Neff LLNL, Livermore, USA
- J. Vary, P. Maris Iowa State University, USA
- H. Hergert

The Ohio State University, USA

- P. Piecuch, S. Bogner Michigan State University, USA
- GSI Helmholtzzentrum
 - P. Papakonstantinou IPM

Thanks for your attention!

Center for

Computing Frankfurt

Scientific

Deutsche Forschungsgemeinschaft

OEWE

Exzellente Forschung für Hessens Zukunft

HELMHOLTZ **GEMEINSCHAFT**

Bundesministerium für Bildung und Forschung

Computing T