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Ŵ (0B) + Ŵ (1B)
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+Ŵ (2B) + Ŵ (3B)
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Coupled-Cluster Method
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G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean --- arXiv:1312.7872 [nucl-th] (2013)

G. Hagen, T. Papenbrock, D.J. Dean, M. Hjorth-Jensen --- Phys. Rev. C 82, 034330 (2010)

G. Hagen, T. Papenbrock, D.J. Dean et al. --- Phys. Rev. C 76, 034302 (2007)
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Wednesday, February 19, 14



Sven Binder - TU Darmstadt - March 2013

Singles and Doubles Excitations: CCSD

T̂•CCSD: truncate    at the 2p2h level, T̂ = T̂1 + T̂2

13

Wednesday, February 19, 14



|Φ0〉

Sven Binder - TU Darmstadt - March 2013

Singles and Doubles Excitations: CCSD

T̂•CCSD: truncate    at the 2p2h level, T̂ = T̂1 + T̂2

13

Wednesday, February 19, 14



T̂1 |Φ0〉

Sven Binder - TU Darmstadt - March 2013

Singles and Doubles Excitations: CCSD

T̂•CCSD: truncate    at the 2p2h level, T̂ = T̂1 + T̂2

13

Wednesday, February 19, 14



T̂2 |Φ0〉

Sven Binder - TU Darmstadt - March 2013

Singles and Doubles Excitations: CCSD

T̂•CCSD: truncate    at the 2p2h level, T̂ = T̂1 + T̂2

13

Wednesday, February 19, 14



T̂1 T̂2 T̂2 |Φ0〉

Sven Binder - TU Darmstadt - March 2013

Singles and Doubles Excitations: CCSD

T̂•CCSD: truncate    at the 2p2h level, T̂ = T̂1 + T̂2

13

•     - Ansatz: higher excitations from 
products of lower excitation operators
eT̂

Wednesday, February 19, 14



T̂1 T̂2 T̂2 |Φ0〉

Sven Binder - TU Darmstadt - March 2013

Singles and Doubles Excitations: CCSD

T̂•CCSD: truncate    at the 2p2h level, T̂ = T̂1 + T̂2

13

•CCSD equations

�E(CCSD) = h�0|Ĥ|�0i
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i |Ĥ|�0i , 8 a, i

0 = h�ab
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Reduced-Cutoff
3N Interaction

15

R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navrátil --- PRL 109, 052501 (2012)

R. Roth, A. Calci, J. Langhammer, S. Binder --- arXiv:1311.3563
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Normal-Ordering 
Two-Body

Approximation

19

G. Hagen, T. Papenbrock, D.J. Dean et al. --- Phys. Rev. C 76, 034302 (2007)

R. Roth, S. Binder, K. Vobig et al. --- Phys. Rev. Lett. 109, 052501(R) (2012)

S. Binder, J. Langhammer, A. Calci et al. --- Phys. Rev. C 82, 021303 (2013)
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Wednesday, February 19, 14



Sven Binder - TU Darmstadt - March 2013

Normal-Ordered 3N Interaction

20

Avoid technical challenge of 
including explicit 3N interactions in 

many-body calculation

+
X

W 3B
������ â†�â
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•Normal-Ordered Two-Body Approximation (NO2B): 
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•⇒ NO2B is efficient and accurate way to 
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•Residual 3N interaction relevant for CCSD, 
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Coupled-Cluster 
Triples Corrections

27

A.G. Taube, R. J. Bartlett, The Journal of Chemical Physics 128, 044110 (2008)

G. Hagen, T. Papenbrock, D.J. Dean, M. Hjorth-Jensen --- Phys. Rev. C 82, 034330 (2010)

S. Binder, P. Piecuch, A. Calci, J. Langhammer, R. Roth --- Phys. Rev. C 88, 054319 (2013)

P. Piecuch, M. Wloch --- J. Chem. Phys. 123, 224105 (2005)
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•CCSDT,                              , too expensiveT̂ = T̂1 + T̂2 + T̂3
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Coupled-Cluster Triples Corrections

28

•CCSDT,                              , too expensiveT̂ = T̂1 + T̂2 + T̂3
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•Non-iterative triples corrections

•Coupled-Cluster energy functional
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Denominators in ΛCCSD(T), CR-CC(2,3)
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Dabc
ijk = f i

i + f j
j + fk

k � fa
a � f b

b � f c
c•ΛCCSD(T) :
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31

Dabc
ijk = f i

i + f j
j + fk

k � fa
a � f b

b � f c
c•ΛCCSD(T) :

Ĥ = e�T̂ ĤNeT̂•Two- and three-body matrix elements of 
in denominator cannot be treated exactly in spherical 
formulation

•CR-CC(2,3) : Dabc
ijk = Hi

i + · · ·+Hij
ij + · · ·+Hijk

ijk + . . .
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•D(k): up to k-body terms in denominatorOption 1: Discard
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•3B matrix elements are negligible,

Option 1: Discard
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•Use triples correction to estimate errors due to cluster truncation
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Cluster Convergence

34

•Use triples correction to estimate errors due to cluster truncation

• typically < 3 % contributions from triples correction for all 
nuclear masses
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Heavy Nuclei

35

S. Binder, J. Langhammer, A. Calci, R. Roth, arXiv:1312.5685
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5.9. Ab Initio Description of Heavy Nuclei
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and
NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-
ues [161] are shown as black bars.

Hamiltonian points in the same direction as for the NN+3N-induced Hamilto-
nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
body problem can be solved very accurately using ab initio methods, potential
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and
NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-
ues [161] are shown as black bars.

Hamiltonian points in the same direction as for the NN+3N-induced Hamilto-
nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
body problem can be solved very accurately using ab initio methods, potential
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and
NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-
ues [161] are shown as black bars.

Hamiltonian points in the same direction as for the NN+3N-induced Hamilto-
nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and
NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-
ues [161] are shown as black bars.

Hamiltonian points in the same direction as for the NN+3N-induced Hamilto-
nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
body problem can be solved very accurately using ab initio methods, potential
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and
NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-
ues [161] are shown as black bars.

Hamiltonian points in the same direction as for the NN+3N-induced Hamilto-
nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
body problem can be solved very accurately using ab initio methods, potential
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and
NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-
ues [161] are shown as black bars.

Hamiltonian points in the same direction as for the NN+3N-induced Hamilto-
nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
body problem can be solved very accurately using ab initio methods, potential
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and
NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-
ues [161] are shown as black bars.

Hamiltonian points in the same direction as for the NN+3N-induced Hamilto-
nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
body problem can be solved very accurately using ab initio methods, potential
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Figure 5.30: Charge radii obtained from Hartree-Fock calculations for the NN+3N-induced and
NN+3N-full Hamiltonian with parameters as in Figure 5.29. Experimental val-
ues [161] are shown as black bars.
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nian, because the repulsive contributions are no longer able to overcompensate
the attractive contributions. Furthermore, the 350 MeV NN+3N-full Hamiltonian
results exhibit a flow-parameter dependence that increases with mass number.
This shows that in addition to the fact that the repulsive contributions are not
only smaller for the Λ3N = 350 MeV NN+3N-full Hamiltonian compared to the
400 MeV case, but that they also grow slower with the nuclear masses. Therefore,
an almost constant flow-parameter dependence of the NN+3N-full results over
the whole mass range is not a general property of NN+3N-full Hamiltonians and
may only be achieved in a small window of initial 3N regular momentum cutoffs
around Λ3N = 400 MeV.

Taking advantage of the robust cancellation of SRG-induced 4N terms for the
NN+3N-full Hamiltonian with Λ3N = 400 MeV, resulting in a very small α depen-
dence, the obtained ground-state energies may be compared to experiment. The
ground-state energies of the oxygen isotopes are very well reproduced. Starting
from the Ca isotopes, a systematic and slowly increasing deviation of the theoret-
ical results from experiment is visible, which is of the order of 1 MeV per nucleon.
Apart from this constant energy shift, the experimental trend of the binding en-
ergies is nicely reproduced. Therefore, these results represent a first confirmation
that chiral Hamiltonians that have been determined in the few-body sector are
also capable of qualitatively describe heavy nuclei. Furthermore, since the many-
body problem can be solved very accurately using ab initio methods, potential
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