# Five- and six-nucleon scattering from QCDbased interaction

Nuclear Structure & Reactions workshop TRIUMF Vancouver, February 17th 2014.

#### **Guillaume Hupin**

#### Lawrence Livermore National Laboratory

#### **Collaborators:**

- S. Quaglioni (LLNL)
- P. Navrátil (TRIUMF)
- R. Roth (TU Darmstadt)
- J. Langhammer (TU Darmstadt)
- C. Romero-Redondo (TRIUMF)
- F. Raimondi (TRIUMF)
- J. Dohet-Eraly (TRIUMF)

#### LLNL-PRES-650083

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC



#### Ab initio NCSM/RGM: formalism for binary clusters

S. Quaglioni and P. Navrátil, PRL101 (2008); PRC79 (2009)



Schrödinger equation on channel basis:

$$H\Psi_{RGM}^{(A)} = E\Psi_{RGM}^{(A)} \longrightarrow \sum_{\nu} \int d\vec{r} \left[ H_{\nu'\nu}(\vec{r}',\vec{r}) - E N_{\nu'\nu}(\vec{r}',\vec{r}) \right] g_{\nu}(\vec{r}) = 0$$

- RGM accounts for: 1) interaction (Hamiltonian kernel), 2) Pauli principle (Norm kernel) between clusters.
- NCSM accounts for: internal structure of clusters.
- Together with the same microscopic nuclear interaction.



# Demonstrated capability to describe binary-cluster reactions starting from NN interactions

☑ Nucleon-nucleus collisions

- ✓ n-<sup>3</sup>H, p-<sup>3</sup>He, N-<sup>4</sup>He, n-<sup>10</sup>Be scattering with N<sup>3</sup>LO NN (mod. Lee-Suzuki eff. Int.)
- Nucleon scattering on <sup>3</sup>H, <sup>3,4</sup>He,<sup>7</sup>Li,<sup>7</sup>Be,<sup>12</sup>C,<sup>16</sup>O with SRG-N<sup>3</sup>LO
- ✓ <sup>7</sup>Be(p,γ)<sup>8</sup>B radiative capture with SRG-N<sup>3</sup>LO

☑Deuterium-nucleus collisions

 ✓ d-<sup>4</sup>He scattering and <sup>6</sup>Li structure with SRG-N<sup>3</sup>LO

✓ <sup>3</sup>H(d,n)<sup>4</sup>He and <sup>3</sup>He(d,p)<sup>4</sup>He reactions with SRG-N<sup>3</sup>LO







3 LLNL-PRES-650083

# Including the NNN force into the NCSM/RGM approach nucleon-nucleus formalism

$$\left\langle \Phi_{\nu'r'}^{J^{\pi}T} \left| \hat{A}_{\nu'} V^{NNN} \hat{A}_{\nu} \right| \Phi_{\nu r}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} \begin{pmatrix} (A-1) \\ r' \end{pmatrix} \\ r' \end{pmatrix} \left| \begin{array}{c} (A-1) \\ (a'=1) \end{pmatrix} \right| \begin{pmatrix} (A-1) \\ (a'=1) \end{pmatrix} \\ (a''=1) \end{pmatrix} \right\rangle$$

$$\mathcal{V}_{\nu'\nu}^{NNN}(r,r') = \sum R_{n'\nu'}(r')R_{nl}(r) \begin{bmatrix} (A-1)(A-2) \\ 2 & \langle \Phi_{\nu'n'}^{J^{\pi}T} | V_{A-2A-1A}(1-2P_{A-1A}) | \Phi_{\nu n}^{J^{\pi}T} \rangle \\ \hline \text{Direct potential:} \\ \approx \sum_{SD} \langle \Psi_{\alpha_{1}}^{(A-1)} | a_{i}^{+}a_{j}^{+}a_{i}a_{k} | \Psi_{\alpha_{1}}^{(A-1)} \rangle_{SD} \\ \hline (a) \qquad (b) \\ - \frac{(A-1)(A-2)(A-3)}{2} \langle \Phi_{\nu'n'}^{J^{\pi}T} | P_{A-1A}V_{A-3A-2A-1} | \Phi_{\nu n}^{J^{\pi}T} \rangle \end{bmatrix}.$$
Exchange potential:  

$$\approx \sum_{SD} \langle \Psi_{\alpha_{1}}^{(A-1)} | a_{h}^{+}a_{i}^{+}a_{j}^{-}a_{m}a_{l}a_{k} | \Psi_{\alpha_{1}}^{(A-1)} \rangle_{SD}$$



Lawrence Livermore National Laboratory

### *n*-<sup>4</sup>He scattering: NN versus NNN interactions

G. Hupin, J. Langhammer et al. PRC88 (2013)





- The NNN interactions influence mostly the P waves.
- The largest splitting between *P* waves is obtained with NN+NNN.
- The agreement of the *P*<sub>3/2</sub> phase-shifts between NN-only and NN+NNN forces is accidental.

Comparison between NN+NNN -ind and NN+NNN at Nmax=13 with six <sup>4</sup>He states.



### *n*-<sup>4</sup>He scattering: study of the RGM convergence in the NNN case

G. Hupin, J. Langhammer et al. PRC88 (2013)





- We have included the first 6 low-lying states of <sup>4</sup>He.
- Convergence is difficult to assess.











### To overcome the difficulty: couple NCSM and NCSM/RGM (NCSMC)

S. Baroni, P. Navrátil and S. Quaglioni PRL110 (2013)

• Methods develop in this presentation to solve the many body problem



• The many body <u>quantum</u> problem best describe by superposition of both

$$\Psi_{NCSMC}^{(A)} = \sum_{\lambda} c_{\lambda} |A\lambda J^{\pi}T\rangle + \sum_{\nu} \int d\vec{r} g_{\nu}(\vec{r}) \hat{A}_{\nu} |\Phi_{\nu\vec{r}}^{(A-a,a)}\rangle$$

#### NCSMC



# Including the NNN force into the NCSMC approach nucleon-nucleus formalism

A-body compound system



Target and projectile in relative motion







#### How *n*-<sup>4</sup>He elastic cross-sections compare ?

G. Hupin, S. Quaglioni and P. Navrátil, work in progress







#### How *n*-<sup>4</sup>He elastic cross-sections compare ?

G. Hupin, S. Quaglioni and P. Navrátil, work in progress









# *p*-<sup>4</sup>He scattering: NCSM/RGM and NCSMC

G. Hupin, S. Quaglioni and P. Navrátil, work in progress

Lawrence Livermore National Laboratory



# Analyzing power and differential cross section G. Hupin, S. Quaglioni and P. Navrátil, work in progress



Lawrence Livermore National Laboratory





<sup>4</sup>He(*d*,*d*)<sup>4</sup>He with NCSMC



Experimental bound and low-lying states of the A=6 nucleon systems.

- Preliminary results in a small model space (Nmax=9).
- The coupling to the compound nuclei addresses some missing correlation.
- Some splitting between the  ${}^{3}D_{3}$  and  ${}^{3}D_{2}$  phase-shifts is missing.



#### <sup>4</sup>He(*d*,*d*)<sup>4</sup>He with NN+NNN interaction G. Hupin, S. Quaglioni and P. Navrátil, work in progress



*d*-<sup>4</sup>He(g.s.) scattering phase-shifts for NN-only with different numbers of deuteron pseudo-states.



• The NCMSC weakens the dependence on the *d*\* pseudo-states.

• Residual dependence could be attributed to the missing breakup channel.



#### <sup>4</sup>He(*d*,*d*)<sup>4</sup>He with NN+NNN interaction G. Hupin, S. Quaglioni and P. Navrátil, work in progress



| $E_B \; [\mathrm{MeV}]$ | NN-only | NN+ $NNN$ -ind | NN+NN-full |
|-------------------------|---------|----------------|------------|
| $^{6}Li$                | -1.43   | -1.15          | -1.73      |

- Preliminary results in a small model space (Nmax=9).
- The  ${}^{3}D_{3}$  resonance is not quite reproduced but the 3N force is helping to get the correct position.



# **Conclusions and Outlook**



Evolution of stars, birth, main sequence, death

- We are extending the *ab initio* NCSM/RGM approach to describe low-energy reactions with two- and three-nucleon interactions.
- We are able to describe:
  - Nucleon-nucleus collisions with NN+NNN interaction
  - Deuterium-nucleus collisions with NN+NNN interaction
  - NCSMC for single- and twonucleon projectile
- Work in progress
  - Fusion reactions with our best complete *ab initio* approach
  - The present NNN force is "incomplete", need to go to N<sup>3</sup>LO
  - Scattering of heavier target

