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• choose relevant degrees of 
freedom: here nucleons and pions

•operators constrained by 
symmetries of QCD

• short-range physics captured in 
few short-range couplings

• separation of scales: Q << Λb, 
breakdown scale Λb~500 MeV

• power-counting:                 
expand in powers Q/Λb

• systematic: work to desired 
accuracy, obtain error estimates

Chiral effective field theory for nuclear forces
                    NN       3N           4N
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treatment of NN and 3N forces 
not consistent in current          

ab initio calculations
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Figure 28. Ground-state energies per nucleon of closed-shell nuclei using IM-
SRG(2) at di↵erent SRG resolution scales � [85]. Results with NN+3N-induced
Hamiltonians are shown on top while the bottom includes initial 3NF. The black bars
are experimental energies.
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Figure 29. Ground-state energy of oxygen isotopes from the IM-SRG for di↵erent
SRG parameters � [87]. Top: Chiral NN Hamiltonian and induced 3N interaction (no
initial 3N terms). Bottom: Consistently evolved chiral NN and 3N Hamiltonian. The
pluses are experimental data from Ref. [88].

can be used as a microscopic input to traditional shell model approaches [63]. Shell

Model calculations with IM-SRG Hamiltonians will yield complete spectroscopic

information, and are in this sense complementary to the direct calculation of excited

states in the IM-SRG framework. A combined IM-SRG/Shell Model approach is

the most practical way to study deformed nuclei in the near future.

Hergert et al. ,
PRL 110, 242501 (2013)

oxygen chain

Open issues in nuclear interactions

• remarkable agreement between different many-body frameworks 

• significant overbinding in heavy nuclei
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al. , arXiv:1312.5685 (2014)

heavy nuclei
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Figure 28. Ground-state energies per nucleon of closed-shell nuclei using IM-
SRG(2) at di↵erent SRG resolution scales � [85]. Results with NN+3N-induced
Hamiltonians are shown on top while the bottom includes initial 3NF. The black bars
are experimental energies.

!

!

!

!

!

!

! !

"

"

"

"

"

"

"
"

#

#

#

#

$

$

$

$

-175

-150

-125

-100

-75

-50

.

E
[M

eV
]

(a) NN+3N-induced

!

!

!

!

!

!

! !

"

"

"

"

"

"

" "

#

#

#

#

$

$

$

$

!

"

#

$

12 14 16 18 20 22 24 26
A

-175

-150

-125

-100

-75

-50

.

E
[M

eV
]

(b) NN+3N-full

MR-IM-SRG(2)
IT-NCSM
CCSD
⇤-CCSD(T)

Figure 29. Ground-state energy of oxygen isotopes from the IM-SRG for di↵erent
SRG parameters � [87]. Top: Chiral NN Hamiltonian and induced 3N interaction (no
initial 3N terms). Bottom: Consistently evolved chiral NN and 3N Hamiltonian. The
pluses are experimental data from Ref. [88].

can be used as a microscopic input to traditional shell model approaches [63]. Shell

Model calculations with IM-SRG Hamiltonians will yield complete spectroscopic

information, and are in this sense complementary to the direct calculation of excited

states in the IM-SRG framework. A combined IM-SRG/Shell Model approach is

the most practical way to study deformed nuclei in the near future.

Hergert et al. ,
PRL 110, 242501 (2013)
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al. , arXiv:1312.5685 (2014)

• power counting?

• missing NN and many-body contributions? 

• optimized fitting procedures? 

heavy nuclei



Chiral 3N forces at subleading order (N3LO)
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FIG. 3. 2π -1π diagrams at N3LO. Graphs resulting from the interchange of the nucleon lines are not shown. For notation see
Figs. 1 and 2.

lines of Ref. [24]. From the remaining graphs in Fig. 2, diagram
(11) does not contribute at the considered order owing to the
1/m suppression caused by the time derivative entering the
Weinberg-Tomozawa vertex.3 For the same reason, diagram
(25) also leads to a vanishing result at the order considered.
Here, the time derivative acts either on the pions exchanged
between two nucleons, leading to a 1/m suppression, or on
the pion in the tadpole, giving an odd power of the loop
momentum l0 to be integrated over. Further, it is easy to see
that Feynman diagrams (18) and (21) also do not contribute.
Diagram (29) involves one insertion of the ππNN vertices of
dimension ν = 2. The relevant vertices are proportional to the
LECs d1,2,3,5,14,15 and d̃24,26,27,28,30. The corresponding 3NF is
shifted to higher orders since all these vertices involve at least
one time derivative (see Ref. [20] for explicit expressions).
Last but not least, we also found that diagram (33) does not
generate any 3NF. Thus, we are left with diagrams (5)–(7),
(19), and (20). The 3NF contribution from diagrams (5)–(7)
can be evaluated straightforwardly by using the expressions
for the effective Hamilton operator from Ref. [24]. Diagrams
(19) and (20) do not involve reducible topologies and can
be evaluated by using the Feynman graph technique. Notice
that the individual contributions from graphs (19) and (20) in
Fig. 2 and from diagram (20) in Fig. 3 depend on the
arbitrary constant α, which specifies the parametrization of the
matrix U [see Eq. (2.2)]. Clearly, their sum is α-independent.

3This graph does not involve reducible time-ordered topologies. Its
contribution to the nuclear force is, therefore, most easily obtained
by using the Feynman graph technique. The 1/m suppression from
the time derivative entering the Weinberg-Tomozawa vertex follows
then simply from the four-momentum conservation.

We are now in the position to present our results. The
expressions for diagrams (5)–(7) and (19) can be cast into
the form of Eq. (2.6), leading only to shifts in the values of
the LECs ci :

c1 → c̄1 = c1 − g2
A Mπ

64πF 2
π

, c3 → c̄3 = c3 + g4
A Mπ

16πF 2
π

,

c4 → c̄4 = c4 − g4
A Mπ

16πF 2
π

, (2.8)

with δc1 = −0.13 GeV−1 and δc3 = −δc4 = 0.52 GeV−1.
These shifts are of the order of 20% to 30% of the correspond-
ing LECs and thus cannot be neglected in precision studies
of 3NFs. In contrast to this, the contribution from graph (20)
takes a more complicated form compared to Eq. (2.6) and is
given by

V
(4)

2π = g4
A

256πF 6
π

#σ1 · #q1 #σ3 · #q3[
q2

1 + M2
π

][
q2

3 + M2
π

]

×
[
τ 1 · τ 3

(
Mπ

(
M2

π + 3q2
1 + 3q2

3 + 4#q1 · #q3
)

+
(
2M2

π + q2
1 + q2

3 + 2#q1 · #q3
)

(2.9)

×
(
3M2

π + 3q2
1 + 3q2

3 + 4#q1 · #q3
)
A(q2)

)

− τ 1 × τ 3 · τ 2 #q1 × #q3 · #σ2

×
(
Mπ + (4M2

π + q2
1 + q2

3 + 2#q1 · #q3)A(q2)
)]

.

Here, we have used dimensional regularization to evaluate the
loop integrals. In this framework, the loop function A(q) is
given by

A(q) = 1
2q

arctan
q

2Mπ

. (2.10)
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key for 
• consistency
• tests 
• improved precision
• uncertainty estimates 
of the theory 
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Calculation of many-body forces

Goal

Calculate matrix elements of 3NF in a partial-

wave decomposed form which is suitable for 

different few- and many-body frameworks

Challenge

Due to the large number of matrix elements, 

the calculation is extremely expensive.

Strategy

Develop an efficient framework that allows to 

treat arbitrary 3N interactions.

(Krebs and Hebeler)
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comparable to size of N2LO contributions
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FIG. 2. (Color online) Energy per particle versus density for all individual N3LO 3N and 4N force contributions to neutron
matter at the Hartree-Fock level. The bands are obtained by varying the 3N/4N cutoff Λ = 2 − 2.5 fm−1. For the two-pion-
exchange–contact and the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT

and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram illustrates the 3N/4N force topology.

ity of the energy to the single-particle spectrum used.
We find that the energy changes from second to third
order, employing a free or Hartree-Fock spectrum, by
0.8, 0.4, 1.3MeV (1.4, 0.9, 2.7MeV) per particle at n0/2
(n0) for the EGM 450/500, 450/700, EM 500 N3LO po-
tentials, respectively. The results, which include all these
uncertainties, are displayed by the bands in Fig. 1. Un-
derstanding the cutoff dependence and developing im-
proved power counting schemes remain important open
problems in chiral EFT [21]. For the neutron matter en-
ergy at n0, our first complete N3LO calculation yields
14.1 − 21.0MeV per particle. If we were to omit the
results based on the EM 500 N3LO potential, as it con-
verges slowest at n0, the range would be 14.1−18.4MeV.

As we find relatively large contributions from N3LO
3N forces, it is important to study the EFT convergence
from N2LO to N3LO. This is shown in Fig. 3 for the
EGM potentials (N2LO is not available for EM), where
the N3LO results are found to overlap with the N2LO
band across a ±1.5MeV range around 17MeV at satura-
tion density. As expected from the net-attractive N3LO
3N contributions in Fig. 2, the N3LO band yields lower
energies. For the N2LO band, we have estimated the the-
oretical uncertainties in the same way, and the neutron
matter energy ranges from 15.5 − 21.4MeV per particle

at n0. The theoretical uncertainty is reduced from N2LO
to N3LO to 14.1 − 18.4MeV, but not by a factor ∼ 1/3
based on the power counting estimate. This reflects the
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FIG. 3. (Color online) Neutron matter energy per particle as
a function of density at N2LO (upper/blue band that extends
to the dashed line) and N3LO (lower/red band). The bands
are based on the EGM NN potentials and include uncertainty
estimates as in Fig. 1.

Contributions of many-body forces at N3LO in neutron matter
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FIG. 11. (Color online) Energy per particle versus density for all individual N3LO 3N- and 4N-force contributions to symmetric
nuclear matter at the Hartree-Fock level. All bands are obtained by varying the 3N/4N cutoff ⇤ = 2 � 2.5 fm�1. For the
two-pion-exchange–contact, the relativistic-corrections 3N forces, and the short-range 4N forces, the different bands correspond
to the different NN contacts, CT and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram
illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f
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= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c
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values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.

13

0 0.05 0.1 0.15

n [fm-3]

-10

-8

-6

-4

-2

0

2

4

E
/N

 [
M

eV
]

Two-pion-exchange 3N

0 0.05 0.1 0.15

n [fm-3]

Two-pion--one-pion-exchange 3N

0 0.05 0.1 0.15

n [fm-3]

Pion-ring 3N

0 0.05 0.1 0.15

n [fm-3]

-10

-8

-6

-4

-2

0

2

4

    EM 500 MeV1
1

    EGM 450/700 MeV
    EGM 450/500 MeV1

1

Two-pion-exchange--contact 3N

0 0.05 0.1 0.15

n [fm-3]

-0.6

-0.4

-0.2

0

0.2

0.4

E
/N

 [
M

eV
]

    EGM 450/500 MeV1
1

    EM 500 MeV
    EGM 450/700 MeV1

1

Relativistic-corrections 3N

0 0.05 0.1 0.15

n [fm-3]

Three-pion-exchange 4N Va

0 0.05 0.1 0.15

n [fm-3]

Three-pion-exchange 4N Vc

0 0.05 0.1 0.15 0.2

n [fm-3]

-0.6

-0.4

-0.2

0

0.2

0.4

Three-pion-exchange 4N Ve

0 0.05 0.1 0.15

n [fm-3]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
/N

 [
M

eV
]

Pion-pion-interaction 4N Vf

0 0.05 0.1 0.15

n [fm-3]

    EM 500 MeV1
1

    EGM 450/700 MeV
    EGM 450/500 MeV1

1

Two-pion-exchange-contact 4N Vk

0 0.05 0.1 0.15

n [fm-3]

    EGM 500 MeV1
1

    EGM 450/700 MeV
    EGM 450/500 MeV1

1

Two-pion-exchange--contact 4N Vl

0 0.05 0.1 0.15 0.2

n [fm-3]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5    EM 500 MeV1
1

    EGM 450/700 MeV
    EGM 450/500 MeV1

1

Pion-exchange--two-contact 4N Vn
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nuclear matter at the Hartree-Fock level. All bands are obtained by varying the 3N/4N cutoff ⇤ = 2 � 2.5 fm�1. For the
two-pion-exchange–contact, the relativistic-corrections 3N forces, and the short-range 4N forces, the different bands correspond
to the different NN contacts, CT and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram
illustrates the 3N/4N force topology of the particular contribution.

This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c

i

values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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This is in agreement with our result for the sum of these
two topologies: �(56±2) keV, where the small difference
is due to f

R

= 1 in Refs. [44, 47]. So far only the leading
4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
large c
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values, and Kaiser found for these partial N4LO
4N contributions a larger energy of ⇠ 2MeV per particle
at saturation density.
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4N forces have been derived completely. Recently, Kaiser
studied � contributions to 4N forces [44], which enter at

N4LO in �-less chiral EFT. Similarly to the N3LO versus
N2LO 3N forces, these contributions are enhanced by the
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Conclusions/Indications:
• N3LO 3N contributions significant
• N3LO 4N contributions small 



Representation of 3N interactions in momentum space

|pq�⇥ i � |piqi; [(LS)J(lsi)j]JJz(Tti)T Tz⇥

p
q

p

q
p

q

|pq��1 |pq��2 |pq��3
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22

11

33

Due to the large number of matrix elements, the traditional way of 

computing matrix elements requires extreme amounts of computer resources.

Np ' Nq ' 15

N↵ ' 30� 180
dim[hpq↵|V123|p0q0↵0i] ' 107 � 1010

Number of matrix elements was so far 

not sufficient for studies of            systems.A � 4



Calculation of 3N forces in partial-wave 
decomposed representation

traditional method:

• reduce dimension of angular integrals from 8 to 5 by using symmetry

• discretize angular integrals and perform all sums numerically

hpq↵|V123|p0q0↵0i ⇠
X

mi

Z
dp̂ dq̂ dp̂0 dq̂0Y m

l (p̂)Y m̄
l̄ (q̂) hpqST |V123|p0q0S0T 0iY m0

l0 (p̂0)Y m̄0

l̄0 (q̂0)



Calculation of 3N forces in partial-wave 
decomposed representation

traditional method:

• reduce dimension of angular integrals from 8 to 5 by using symmetry

• discretize angular integrals and perform all sums numerically

hpq|V123|p0q0i = V123(p� p0,q� q0
)

= V123(p� p0, q � q0, cos ✓)

new method:

• use that all interaction contributions (except rel. corr.) are local:

       allows to perform 3 integrals analytically

• only a few small discrete internal sums need to be 

performed for each external momentum and angular momentum

hpq↵|V123|p0q0↵0i ⇠
X

mi

Z
dp̂ dq̂ dp̂0 dq̂0Y m

l (p̂)Y m̄
l̄ (q̂) hpqST |V123|p0q0S0T 0iY m0

l0 (p̂0)Y m̄0

l̄0 (q̂0)



Chiral 3N forces at subleading order (N3LO)
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• perfect agreement with results based on traditional approach

• speedup factors of >1000

• very general, can also be applied to 

‣pion-full EFT 
‣N4LO terms
‣currents?

• efficient: allows to study systematically alternative regulators



• all 3N topologies are calculated and stored separately,
allows to easily adjust values of LECs and the cutoff value and form
of non-local regulators

• calculated matrix elements of Faddeev components 

as well as antisymmetrized matrix elements

• HDF5 file format for efficient I/O

• current model space limits:
(all elements calculated on a single
node of a local cluster at OSU)

Current status of calculations
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<cD> <cE> <2/>N2LO <2/>N3LO <2/<1/> <2/<cont> <rings>
-1

-0,75

-0,5

-0,25

0

0,25

0,5

0,75

1

E 
[M

eV
]

450/500 MeV, cD=13.442, cE=0.206, Eb = -8.49 MeV

N3LO

N2LO

see also Skibinski et al., Few-Body Syst. 54, 1315 (2013)

PRELIMINARY



<cD> <cE> <2/>N2LO <2/>N3LO <2/<1/> <2/<cont> <rings>
-1

-0,75

-0,5

-0,25

0

0,25

0,5

0,75

1

E 
[M

eV
]

450/500 MeV, cD=13.442, cE=0.206, Eb = -8.49 MeV
450/500 MeV, cD=5.0, cE=0.0, Eb = -8.01 MeV

Contributions of separate 3NFs in light nuclei: 3H

N3LO

N2LO

see also Skibinski et al., Few-Body Syst. 54, 1315 (2013)

PRELIMINARY



<cD> <cE> <2/>N2LO <2/>N3LO <2/<1/> <2/<cont> <rings>
-1

-0,75

-0,5

-0,25

0

0,25

0,5

0,75

1

E 
[M

eV
]

450/500 MeV, cD=13.442, cE=0.206, Eb = -8.49 MeV
450/500 MeV, cD=5.0, cE=0.0, Eb = -8.01 MeV
450/500 MeV, cD=0.0, cE=0.0, Eb = -7.95 MeV

Contributions of separate 3NFs in light nuclei: 3H

N3LO

N2LO

see also Skibinski et al., Few-Body Syst. 54, 1315 (2013)

PRELIMINARY



<cD> <cE> <2/>N2LO <2/>N3LO <2/<1/> <2/<cont> <rings>
-5

-4

-3

-2

-1

0

1

2

3

4

5

E 
[M

eV
]

450/500 MeV, cD=13.442, cE=0.206, Eb = -29.16 MeV

Contributions of separate 3NFs in light nuclei: 3H

N3LO

N2LO

PRELIMINARY



CONTENTS 23

cuto↵ of ⇤ = 2.0 fm�1 to improve the convergence of the MBPT. Other calculations

show the predictive power of the method for shell structure and pairing gaps [62],

excitation spectra [59], and properties of proton-rich nuclei [61]. On-going work seeks

to extend the framework to include continuum e↵ects for weakly bound or unbound

states, to develop nonperturbative methods for valence shell interactions [63], to relate

to phenomenological models, and to quantify theoretical uncertainties.

4.2. Ab initio calculations with three-nucleon forces

The frontier for RG-based ab initio calculations of finite nuclei using microscopic inter-

nucleon forces is the inclusion of 3NF. The SRG has made possible the inclusion of

consistently evolved 3NF in a harmonic oscillator basis [27, 30], which means 3NF

are present in the initial Hamiltonian but also induced as a result of RG evolution.The oxygen anomaly - impact of 3N forces 
include “normal-ordered” 2-body part of 3N forces (enhanced by core A) 

leads to repulsive interactions between  
can understand partly based on Pauli  

d3/2 orbital remains unbound from 16O to 28O 

first microscopic explanation of the oxygen anomaly 
Otsuka, Suzuki, Holt, AS, Akaishi (2010) 

Figure 19. Interaction between valence neutrons and a core nucleon in an oxygen
isotope through a three-body force [33].
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Figure 20. Predictions for two-neutron separation energy and pairing gaps in calcium
isotopes including three-body forces compared to new experimental measurements [60].

Applications of chiral 3N forces at N3LO
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Many-body
perturbation theory

Self-consistent
Greens function 
Barbieri (Surrey), Soma (TU Darmstadt)

In-medium SRG
Bogner (MSU), Hergert (OSU)

!"#$%&!'
%"(&)*+!

!"#$%&!'
*,,-.&!!

/0*1"%-!2!

!"#$!
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FIG. 1: (Color online) Left. One of the diagrams included in the correlated self-energy, Σ̃(ω). Arrows up (down) refer to quasiparticle
(quasihole) states, the Π(ph) propagators include collective ph and charge-exchange resonances, and the gII include pairing between two

particles or two holes. The FRPA method sums analogous diagrams, with any numbers of phonons, to all orders [21, 25]. Right. Single-

particle spectral distribution for neutrons in 56Ni, obtained from FRPA. Energies above (below) EF are for transitions to excited states of
57Ni (55Ni). The quasiparticle states close to the Fermi surface are clearly visible. Integrating over r [Eq. (4)] gives the SFs reported in Tab. I.

poles give the experimental energy transfer for nucleon pickup

(knockout) to the excited states of the systems with A+1 (A-1)

particles. The propagator (2) is obtained by solving the Dyson

equation [g(ω) = g(0)(ω) + g(0)(ω) Σ"(ω) g(ω)], where

g(0)(ω) propagates a free nucleon. The information on nuclear

structure is included in the irreducible self-energy, which was

split into two contributions:

Σ"(r, r′;ω) = ΣMF (r, r′;ω) + Σ̃(r, r′;ω) . (3)

The term ΣMF (ω) includes both the nuclear mean field (MF)

and diagrams describing two-particle scattering outside the

model space, generated using a G-matrix resummation [24].

As a consequence, it acquires an energy dependence which

is induced by SRC among nucleons [23]. The second term,

Σ̃(ω), includes the LRC. In the present work, Σ̃(ω) is calcu-

lated in the so-called Faddeev random phase approximation

(FRPA) of Refs. [21, 25]. This includes diagrams for particle-

vibration coupling at all orders and with all possible vibration

modes, see Fig. 1, as well as low-energy 2p1h/2h1p configu-

rations. Particle-vibration couplings play an important role in

compressing the single-particle spectrum at the Fermi energy

to its experimental density. However, a complete configura-

tion mixing of states around the Fermi surface is still missing

and would require SM calculations.

Each spectroscopic amplitude ψA±1(r) appearing in Eq. (2)

has to be normalized to its respective SF as

Zα =

∫

dr |ψA±1α (r)|2 =
1

1 −
∂Σ"
α̂α̂
(ω)

∂ω

∣

∣

∣

∣

∣

∣

∣

∣

ω=±(EA±1α −E
A
0
)

, (4)

where Σ"
α̂α̂
(ω) ≡< ψ̂α|Σ

"(ω)|ψ̂α > is the matrix element of

the self-energy calculated for the overlap function itself but

normalized to unity (
∫

dr |ψ̂α(r)|
2 = 1). By inserting Eq. (3)

into (4), one distinguishes two contributions to the quenching

of SFs. For model spaces sufficiently large, all low-energy

physics is described by Σ̃(ω). Then, the derivative of ΣMF (ω)

accounts for the coupling to states outside the model space

and estimates the effects of SRC alone [33].

In general, the SC self-energy (3) is a functional of the one-

body propagator itself, Σ" = Σ"[g]. Hence the FRPA equa-

tions for the self-energy and the Dyson equation have to be

solved iteratively. The mean-field part, ΣMF [g], was calcu-

lated exactly in terms of the fully fragmented propagator (2).

For the FRPA, this procedurewas simplified by employing the

Σ̃[gIPM] obtained in terms of a MF-like propagator

gIPM(r, r′;ω) =
∑

n /∈F

(φn(r))
∗ φn(r

′)

ω − εIMPn + iη
+
∑

k∈F

φk(r) (φk(r
′))∗

ω − εIMP
k
− iη

,

(5)

which is updated at each iteration to approximate Eq. (2) with

a limited number of poles. Eq. (5) defines a set of undressed

single-particle states that can be taken as a basis for SM ap-

plications. This feature will be used below to estimate the im-

portance of configuration mixing effects on the quenching of

spectroscopic factors. The present calculations employed the

N3LO interaction from chiral perturbation theory [26] with a

modification of the tensor monopoles to correct for missing

three-nucleon interactions [27].

Results.— The calculated single-particle spectral function

[S 56Ni(r,ω) =
1
π
|g(r = r′;ω)|2] is shown in Fig. 1 for the case

of neutron transfer on 56Ni. This picture puts in evidence the

quasiparticle and quasihole states associated with valence or-

bits in the 0p1 f shell. The corresponding SFs are reported

in Tab. I, including both protons and neutrons. The first col-

umn is obtained by including only the derivative of ΣMF (ω)

when calculating Eq. (4). Since N3LO is rather soft com-

pared to other realistic interactions the effect of SRC is rela-

tively small. From other models one could expect a quenching

up to about 10% [16], as confirmed by recent electron scatter-

ing experiments [14, 15, 28]. This difference would not affect

sensibly the conclusions below. The complete FRPA result for

SFs is given in the second column. For the transition between

the 56Ni and 57Ni ground states, our result agrees with knock-

C. Barbieri, PRL 103,202520 (2009)

3BF beyond the EoS

Shear viscosity with CBF

Benhar & Valli, PRL 99, 232501 (2007)
Benhar & Carbone, arxiv:0912.0129

PNS dynamical evolution with BHF

Burgio et al., arxiv:1106.2736

• Many-body modelers are aiming at complete descriptions!
• Consistent description of transport coefficients
• Response of nuclear & neutron matter
• Transport coefficients & dynamical evolution of NS 27 / 30
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Details!

Introduction

VNN
V3N

V3N

V3N

VNN

VNN

V3N

V3N

VNN

V3N

Required inputs:

1. consistent NN and 3N forces at N3LO in partial-wave-decomposed form

2. softened forces for judging approximations and pushing to heavier nuclei



Inclusion of chiral 3N forces in many-body frameworks

Problem:
Basis size for converged results of ab initio calculations including 

3N forces grows rapidly with the number of particles. 
Calculations limited to light nuclei.  

Use SRG transformations to decouple low- and high momentum states.
Required basis size decreases drastically.

Hebeler PRC(R) 85, 021002 (2012)

Implementation of SRG evolution of 3NF in a momentum basis:

see also talks by Angelo Calci and Kyle Wendt
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• so far 3NF treated in Hartree-Fock approximation

• no indications for unnaturally large 4N force contributions

KH and Furnstahl, PRC 87, 031302(R) (2013)



• application to finite nuclei and infinite matter

‣ equation of state

‣ systematic study of induced many-body contributions, scaling behavior

‣ include initial N3LO 3N interactions, study power counting
(delta-full EFT, N4LO, incorporation and calculation of consistent currents)

Ab initio nuclear structure calculations:
Current developments and future directions



‣ different decoupling patterns (e.g. Vlow k)

‣ improved efficiency of evolution

‣ suppression of many-body forces?

k2

k�2

• study of various generators

• application to finite nuclei and infinite matter

‣ equation of state

‣ systematic study of induced many-body contributions, scaling behavior

‣ include initial N3LO 3N interactions, study power counting
(delta-full EFT, N4LO, incorporation and calculation of consistent currents)Overview RG Summary Extras Flow Results History Eqs. Problem

Two ways to decouple with RG equations
“Vlow k ”

Λ
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Λ
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Λ
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Lower a cutoff �i in k , k �,
e.g., demand
dT (k , k �; k2)/d� = 0

Similarity RG

λ
0

λ
1

λ
2

k’

k

Drive the Hamiltonian toward
diagonal with “flow equation”
[Wegner; Glazek/Wilson (1990’s)]

Dick Furnstahl RG in Nuclear Physics

Anderson et al. , PRC 77, 037001 (2008)

Ab initio nuclear structure calculations:
Current developments and future directions
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Dick Furnstahl RG in Nuclear Physics
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• explicit calculation of unitary transformation
‣ RG evolution of operators

‣ study of correlations in nuclear systems, ‘factorization’
             see talk by Dick Furnstahl

Ab initio nuclear structure calculations:
Current developments and future directions



Thank you!



RG evolution of 3N interactions in momentum space

p
q

p

q
p

q

|pq��1 |pq��2 |pq��3

1

2

3

22

11

33

|pq�⇥ i � |piqi; [(LS)J(lsi)j]JJz(Tti)T Tz⇥

dVij

ds
= [[Tij , Vij ] , Tij + Vij ] ,

dV123

ds
= [[T12, V12] , V13 + V23 + V123]

+ [[T13, V13] , V12 + V23 + V123]
+ [[T23, V23] , V12 + V13 + V123]
+ [[Trel, V123] , Hs]

• represent interaction in basis

• explicit equations for NN and 3N flow equations

Bogner, Furnstahl, Perry PRC 75, 061001(R) (2007)
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RG evolution of 3N interactions in momentum space
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Hebeler PRC(R) 85, 021002 (2012)



dVij

ds
= [[Tij , Vij ] , Tij + Vij ] ,

dV123

ds
= [[T12, V12] , V13 + V23 + V123]

+ [[T13, V13] , V12 + V23 + V123]
+ [[T23, V23] , V12 + V13 + V123]
+ [[Trel, V123] , Hs]

SRG flow equations of NN and 3N forces in momentum basis

�s = [Trel, Hs]
dHs

ds
= [�s, Hs]

• spectators correspond to delta functions, matrix representation of      ill-defined

• solution: explicit separation of NN and 3N flow equations

see Bogner, Furnstahl, Perry PRC 75, 061001(R) (2007)

• only connected terms remain in           , ‘dangerous’ delta functions cancel dV123

ds

Hs

H = T + V12 + V13 + V23 + V123



SRG evolution in momentum space
• evolve the antisymmetrized 3N interaction 

• embed NN interaction in 3N basis:

V 123 =ihpq↵| (1 + P123 + P132)V
(i)
123(1 + P123 + P132) |p0q0↵0ii

V13 = P123V12P132, V23 = P132V12P123

with 3hpq↵|V12|p0q0↵0i3 = hp↵̃|VNN|p0↵̃0i �(q � q0)/q2

• use P123V 123 = P132V 123 = V 123

) dV 123/ds = C1(s, T, VNN, P )

+ C2(s, T, VNN, V 123, P )

+ C3(s, T, V 123)



SRG evolution of 3N interactions in momentum space:
Results for the Triton

Hebeler PRC(R) 85, 021002 (2012)
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SRG evolution of 3N interactions in momentum space:
Results for the Triton

Hebeler PRC(R) 85, 021002 (2012)

       It works:
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