Nuclear Struclear Structure and Reactions: Experimental and Ab-Initio Perspetives TRIUMF, 18-21 February 2014

Ab-Initio Studies of Three-Body Interactions around O and Ca isotopes

Carlo Barbieri University of Surrey

A. Carbone, A. Cipollone, T. Duguet, V. Somà, P. Navrátil, A. Polls, A. Rios-Huguet

- Dyson (closed-shell) and Gorkov (open shells) formalisms of GF
- Inclusion of 3NF and fluorine/nitrogen driplines
- Spectral functions and masses around ^AO and ^ACa
- Applications of SCGF to reactions—optical models

V. Somà, A. Cipollone, CB, P. Navrátil, T. Duguet, arXiv:1312.2068 [nucl-th]

A. Carbone, A. Cipollone, CB, A. Rios, A. Polls, Phys. Rev. C88, 054326 (2013) A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)

V. Somà, CB, and T. Duguet, , arXiv:1311.1989 [nucl-th] – Phys. Rev C, in print V. Somà, CB, and T. Duguet, Phys. Rev. C **87**, 011303R (2013) V. Somà, T. Duguet, and CB, Phys. Rev. C **84**, 064317 (2011)

Green's functions in many-body theory

One-body Green's function (or propagator) describes the motion of quasiparticles and holes:

$$g_{\alpha\beta}(E) = \sum_{n} \frac{\langle \Psi_{0}^{A} | c_{\alpha} | \Psi_{n}^{A+1} \rangle \langle \Psi_{n}^{A+1} | c_{\beta}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{n}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{k} \frac{\langle \Psi_{0}^{A} | c_{\beta}^{\dagger} | \Psi_{k}^{A-1} \rangle \langle \Psi_{k}^{A-1} | c_{\alpha} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{k}^{A-1}) - i\eta}$$

...this contains all the structure information probed by nucleon transfer (spectral function):

Faddeev-RPA in two words ...

- The Self-energy $\Sigma^{\star}(\omega)$ yields both single-particle states and scattering
- Finite nuclei: \rightarrow require high-performance computing

Faddeev-RPA in two words...

Particle vibration coupling is the main cause driving the distribution of particle strength—a least close to the Fermi surface...

Open-shells: 1st & 2nd order Gorkov diagrams

V. Somà, CB, T. Duguet, , arXiv:1311.1989 [nucl-th] – *PRC*, in print
V. Somà, CB, T. Duguet, Phys. Rev. C 87, 011303R (2013)
V. Somà, T. Duguet, CB, Phys. Rev. C 84, 064317 (2011)

₩ 2nd order → energy-dependent self-energy

$$\Sigma_{ab}^{11(2)}(\omega) = \uparrow_{\omega'}^{a} \bigcap_{\substack{d \\ b}} \uparrow_{\omega''}^{e} \bigcap_{\substack{h \\ b}} \uparrow_{\omega''}^{e} + \uparrow_{\omega'}^{a} \bigcap_{\substack{d \\ b}} \uparrow_{\omega''}^{e} \bigcap_{\substack{d \\ b}} \uparrow_{\omega''}^{e}$$

Gorkov equations

eigenvalue problem

$$\sum_{b} \left(\begin{array}{cc} t_{ab} - \mu_{ab} + \Sigma_{ab}^{11}(\omega) & \Sigma_{ab}^{12}(\omega) \\ \Sigma_{ab}^{21}(\omega) & -t_{ab} + \mu_{ab} + \Sigma_{ab}^{22}(\omega) \end{array} \right) \bigg|_{\omega_{k}} \left(\begin{array}{c} \mathcal{U}_{b}^{k} \\ \mathcal{V}_{b}^{k} \end{array} \right) = \omega_{k} \left(\begin{array}{c} \mathcal{U}_{a}^{k} \\ \mathcal{V}_{a}^{k} \end{array} \right)$$

 $\mathcal{U}_{a}^{k*} \equiv \langle \Psi_{k} | \bar{a}_{a}^{\dagger} | \Psi_{0}
angle \ \mathcal{V}_{a}^{k*} \equiv \langle \Psi_{k} | a_{a} | \Psi_{0}
angle$

V. SOMÀ, T. DUGUET, AND C. BARBIERI

PHYSICAL REVIEW C 84, 064317 (2011)

Ab INITIO SELF-CONSISTENT GORKOV-GREEN's ...

one obtains

5. Block-diagonal structu

a. First ore The goal of this subsection is to discuss how the block-diagona reflects in the various self-energy contributions, starting with the fir and (C19) into Eq. (B7), and introducing the factor

$$f_{\alpha\beta\nu\delta}^{n_sn_bn_cn_d} \equiv \sqrt{1 + \delta_{\alpha\beta} \delta_{n_sn_d}}$$

Block-diagonal forms of second-order s $\Sigma_{ab}^{[1(1)]} = \sum_{cd,\ell} \tilde{Y}_{acbd} \tilde{Y}_{d}^{l*} \tilde{Y}_{c}^{k}$ angular momentum couplings of the three $Q, \mathcal{R}, \text{ and } \mathcal{S}.$ One proceeds first coupling $= \sum_{a,a,b} \sum_{v} \sum_{m} \sum_{d,d} f_{ac}^{a,a,a,a,d} C_{j,m_{a}}^{M}$ give J_{acb} . The recoupled \mathcal{M} term is computed in the transport of the tr

$$\begin{array}{rcl} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

and properties of Clebsch-Gordan coefficients has been used. The $\delta_{\pi_a\pi_b}$ and $\delta_{q_sq_b}$, leading to $\delta_{a\beta} = \delta_{j_sj_b} \delta_{\pi_s\pi_b} \delta_{q_sq_b}$. Similarly, for Σ^{220}

 $= \delta_{\alpha\beta} \delta_{m,n}$

 $\equiv \delta_{\alpha\beta} \delta_{m,m}$ $\equiv \delta_{\alpha\beta} \delta_{m_{\alpha}m}$

where general properties of Clebsch-Gord

Let us consider the anomalous contributions to the first-order self-er derives $\Sigma_{ab}^{12(1)} = \frac{1}{2} \sum \overline{V}_{abcd} \overline{V}_{c}^{k*} \overline{U}_{d}^{k}$

$$\mathcal{N}_{\sigma(J_{c}J_{00})}^{k_{1}k_{2}k_{3}} = \delta_{J_{00}j_{a}}\delta_{M_{00}m_{a}}\sum_{\kappa_{c}\kappa_{c}}$$

5

 $= -\frac{1}{2} \sum_{n_i,n_j \in i_i} \sum_{\gamma} \sum_{m_c} \sum_{JM} f_{\alpha\beta\gamma\gamma}^{n_i n_i n_i n_j} \eta_b \eta_c C_j$ One can show that the same result is obtain

$$\begin{split} &= -\frac{1}{2} \sum_{n,k,l} \sum_{\gamma} \sum_{m_{i}} \int_{J} f_{a\beta\gamma\gamma}^{a_{i},a_{i},a_{i},a_{i}}} f_{a\beta\gamma\gamma}^{a_{i},a_{i},a_{i},a_{i}}} & \mathcal{N}_{a}^{b_{i},k_{i},k_{i}} = \sum_{m_{1}m_{2}m_{2}M_{2}} C_{j_{1},m_{1},j_{2}m_{2}}^{J,M_{1}} C_{j_{1},m_{1},j_{2}m_{2}}^{J,M_{1}} \sum_{J_{ac}M_{ac}J_{i},k_{i},k_{i}} \sum_{l_{ac}M_{ac}J_{i},k_{i},k_{i}} \left\{ \frac{\mathcal{N}_{a}(c,J,a_{i})}{\omega - (\omega_{k_{1}} + 1)^{2}} - \frac{1}{2} \sum_{J_{ac}M_{ac}J_{i},k_{i},k_{i}} \sum_{J_{ac}M_{ac}J_{i},k_{i},k_{i}}$$

where the block-diagonal anomalous density matrix is introduced th

$$\bar{\rho}_{\bar{n}_{k}\bar{n}_{b}}^{[\alpha]} = \sum_{n_{k}} U_{n_{k}[\alpha]}^{n_{k}} V_{\bar{n}_{k}[\alpha]}^{n_{k}}.$$

 $= \sum \sum n_{\alpha} \eta_{\alpha} \eta_{\alpha} f_{\alpha,n,n,n} C_{j_{\alpha},m_{1},j_{\alpha},m_{2}}^{J,M_{\alpha}} C_{j_{\alpha},m_{1},j_{\alpha},m_{3}}^{J,m_{1}} C_{j_{\alpha},m_{\alpha},j_{\alpha},-m_{\alpha},j_{\alpha},-m_{\alpha},j_{\alpha},-m_{\alpha},j_{\alpha},-m_{\alpha},j_{\alpha},m_{\alpha}}^{J,M_{\alpha}} V_{\alpha,n,n,n}^{J,\alpha} V_{\alpha,n,\alpha}^{J,\alpha} V_{\alpha,\alpha}^{J,\alpha} V_{\alpha,\alpha}^$

[V. Somà, T. Duguet, CB, Pys. Rev. C84, 046317 (2011)]

$$= \sum_{n_1M_c} \sum_{k,n,n_i} \eta_a \pi_{k_1} \int_{a_k,n_i,n_i}^{a_k,n_i,n_i} \frac{\sqrt{2J_c + 1}}{\sqrt{2J_a + 1}} (-1)^{J_c + J_{k_1} - J_c} C_{J_cM_{k_1}m_k}^{J_cM_{k_1}m_k} C_{J_cM_{k_1}m_k}^{J_cm_k} \tilde{V}_{n_i,n_i,n_i}^{J_cm_k} \tilde{V}_{n_i,k_i}^{J_cm_k} V_{n_i,k_i}^{J_c} V_{n_i,k_i}^{n_i} V_{n_i,k_i}^{J_k} V_{n_i,k_i}^{n_i} V_{n_i,k_i}^{J_cm_k} V_{n_i,k_i}^{J_$$

 $= \delta_{\alpha\beta} \, \delta_{m_{\alpha}m_{b}} \, \frac{1}{2} \int_{n_{c}}^{n_{c}}$ $\equiv \delta_{\alpha\beta} \, \delta_{m_{\alpha}m_{b}} \, \Sigma_{n_{c}}^{21}$ which recovers relation (72a). The remaining quantities [see Eqs. (69) and (70)] are related to M and N by permutations of $\{k_1, k_2, k_3\}$ indices and can be obtained from Eqs. (C35) and (C36) by taking into account the different recoupling of j_{k_1}, j_{k_2} and j_{k_1} to J_{10t} and J_c as follows: (i i i)

PHYSICAL REVIEW C 84, 064317 (2011)

 $^{12}_{cd}(\omega') G^{11}_{fb}(\omega'') G^{11}_{ee}(\omega' + \omega'' - \omega)$

$$\frac{\sum_{k=1}^{l_1} \mathcal{U}_{k}^{l_2} \mathcal{U}_{k}^{l_3} + \widetilde{\mathcal{V}}_{k}^{l_3} + \widetilde{\mathcal{V}}_{k}^{l_3}}{u_{i} + \omega_{k_1} + \omega_{k_1} + i\eta} + \frac{\widetilde{\mathcal{V}}_{k}^{l_1} \mathcal{U}_{k}^{l_2} + \widetilde{\mathcal{V}}_{k}^{l_3} \mathcal{U}_{k}^{l_3} \mathcal{U}_{k}^{l_3}}{\omega + (\omega_{k_1} + \omega_{k_1} + \omega_{k_1}) - i\eta} \right\}$$
(B26)
C38)
$$- \int \int \int \omega'' \int \omega''' , \qquad (B27)$$

(C39) $^{12}_{id}(\omega') G^{12}_{fg}(\omega'') G^{21}_{he}(\omega' + \omega'' - \omega)$

0

$$\frac{|{}^{*}\mathcal{U}_{f}^{k_{2}}\mathcal{V}_{g}^{k_{2*}}\bar{\mathcal{U}}_{h}^{k_{3*}}\bar{\mathcal{V}}_{e}^{k_{3}}}{}_{k_{3}}+\frac{\bar{\mathcal{V}}_{e}^{k_{1}}\bar{\mathcal{U}}_{d}^{k_{1}}\bar{\mathcal{V}}_{f}^{k_{2*}}\bar{\mathcal{U}}_{g}^{k_{1}}\bar{\mathcal{V}}_{h}^{k_{2}}\mathcal{U}_{e}^{k_{3}}}{}_{w}+(\omega_{k_{3}}+\omega_{k_{3}}+\omega_{k_{3}})-i\eta}\bigg\}.$$
(B28)

 ${}^{1}_{d}(\omega') G^{11}_{eg}(\omega'') G^{11}_{hf}(\omega' + \omega'' - \omega)$

$$(C41) \xrightarrow{i^* U_k^{l_k} V_k^{l_k} V_k^{l_k} V_l^{l_k} V_l^{l_k}}{\dots + \omega_{l_k} + \omega_{l_k} + \omega_{l_k} + i\eta} + \frac{U_k^{l_k} V_k^{l_k} V_k^{l_k} V_k^{l_k} V_k^{l_k} U_l^{l_k} U_l^{l_k}}{\omega + (\omega_{l_1} + \omega_{l_1} + \omega_{l_1}) - i\eta} \right\}.$$
(B30)

(B31)

 $\equiv \delta_{J_{ac}L_{b}} \delta_{M_{bd}} \sigma_{c} N_{s}^{\prime}$ These terms are finally put together to form the different contributions to second-order self-energies. Let us consider $\Sigma_{ab}^{11(2)}$ a an example [see Eq. (75)]. By inserting Eqs. (C35) and (C36) and summing over all possible total and intermediate angular momenta, one has $\left\{\frac{\mathcal{M}_{a(l_{c}l_{ad})}^{k_{1}k_{2}k_{1}}\left(\mathcal{M}_{b(l_{c}l_{ad})}^{k_{1}k_{2}k_{1}}\right)^{*}}{\omega - (\omega_{k_{c}} + \omega_{k_{c}} + \omega_{k_{c}}) + i\eta} + \frac{\mathcal{N}_{a(l_{c}l_{ad})}^{k_{1}k_{2}k_{1}}\left(\mathcal{N}_{b(l_{c}l_{ad})}^{k_{1}k_{2}k_{1}}\right)^{*}}{\omega + (\omega_{k_{c}} + \omega_{k_{c}} + \omega_{k_{c}}) - i\eta}\right\}$

064317-29

$$G_{eb}^{11}(\omega') G_{eb}^{12}(\omega'') G_{gf}^{21}(\omega' + \omega'' - \omega)$$

cdefeh

$$-\frac{1}{2}\sum_{ode/gh,k_1k_2k_2}\vec{V}_{c/\bar{a}r}\vec{V}_{gd\bar{a}r}\vec{V}_{gd\bar{b}} \left\{ \frac{\mathcal{V}_{c}^{k_1}\mathcal{U}_{d}^{k_2*}\mathcal{U}_{c}^{k_2*}\mathcal{U}_{d}^{k_2*}\vec{U}_{d}^{k_2*}\vec{V}_{d}^{k_1}}{\omega - (\omega_{k_1} + \omega_{k_2} + \omega_{k_3}) + i\eta} + \frac{\mathcal{U}_{c}^{k_2*}\vec{V}_{d}^{k_2*}\vec{V}_{d}^{k_2*}\mathcal{U}_{d}^{k_2*}}{\omega + (\omega_{k_1} + \omega_{k_2}) - i\eta} \right\}.$$
(B32)

064317-23

Approaches in GF theory

Truncation scheme:	Dyson formulation (closed shells)	Gorkov formulation (semi-magic)		
1 st order:	Hartree-Fock	HF-Bogolioubov		
2 nd order:	2 nd order	2 nd order (w/ pairing)		
3 rd and all-orders sums, P-V coupling:	ADC(3) FRPA etc	G-ADC(3) work in progress		

Approaches in GF theory

Modern realistic nuclear forces

Chiral Nucler forces SRG evolved

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

* NNN forces can enter diagrams in three different ways:

^{II} (ω Correction to Correction to external pure 3-body non-contracted 1-Body interaction contribution (small) 2-Body interaction 2-body only 0-bodv 3NF $|\Delta E / E_{CCSD}|$ -body 3NF - Contractions are with *fully correlated density* 2-body 3NF <u>matrices</u> (BEYOND a normal ordering...) 10 [PhyRevC 76. 034302 (2007)] residual 3NF 10 (1)(2)(3)(4)(5)

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

** NNN forces can enter diagrams in three different ways:

→ Define new 1- and 2-body interactions and use <u>only</u> interaction-irreducible diagrams

 Contractions are with <u>fully correlated density matrices</u> (BEYOND a normal ordering...)

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

* NNN forces can enter diagrams in three different ways:

→ Define new 1- and 2-body interactions and use <u>only</u> interaction-irreducible diagrams

 Contractions are with <u>fully correlated density matrices</u> (BEYOND a normal ordering...)

NNN forces in FRPA/FTDA formalism

A. Cipollone, CB

\rightarrow Ladder contributions to static self-energy are negligible (in oxygen)

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

effectively.

(b)

three *interaction reducible* ones (b, c and d) that are contained in Fig. 3a.

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Third order PT diagrams with 3BFs:

FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3^{rd} -order in perturbative expansion (7), making use of the effective hamiltonian of Eq. (9).

A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)

- Second order PT diagrams with 3BFs:

- Third order PT diagrams with 3BFs: (0)(n)

FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3^{rd} -order in perturbative expansion (7), making use of the effective hamiltonian of Eq. (9).

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)

 \rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen

 \rightarrow d3/2 raised by genuine 3NF

→ cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm⁻¹) N2LO (Λ = 400Mev/c) chiral 3N interaction evolved (2.0fm⁻¹)

Results for the N-O-F chains

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)

 \rightarrow 3NF crucial for reproducing binding energies and driplines around oxygen

 \rightarrow d3/2 raised by genuine 3NF

→ cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm⁻¹) N2LO (Λ = 400Mev/c) chiral 3N interaction evolved (2.0fm⁻¹)

Neutron spectral function of Oxygens

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)

Calcium isotopic chain

V. Somà, CB *et al.*, arXiv:1312.2068 [nucl-th]

Ab-initio calculation of the whole Ca chain with NN+3N forces

- → induced and full3NF investigated
- → genuine (N2LO) 3NF needed to correct the energy curvature
- → Full 3NF give a correct trend but overbind!
- \rightarrow convergence worsens after A=52

Calcium isotopic chain

V. Somà, CB *et al.*, arXiv:1312.2068 [nucl-th]

Ab-initio calculation of the whole Ca chain with NN+3N forces

- \rightarrow induced and full3NF investigated
- → genuine (N2LO) 3NF needed to correct the energy curvature
- → Full 3NF give a correct trend but overbind!
- \rightarrow convergence worsens after A=52

Calcium isotopic chain

V. Somà, CB *et al.*, arXiv:1312.2068 [nucl-th]

Two-neutron separation energies

- \rightarrow induced and full3NF investigated
- \rightarrow genuine (N2LO) 3NF needed to reproduce S_{2n}
- → N=20 and Z=20 gaps overestimated!

Neighbouring chains: Ar, K, Sc, Ti

V. Somà, CB et al., arXiv:1312.2068 [nucl-th]

- \rightarrow induced and full3NF investigated
- \rightarrow genuine (N2LO) 3NF needed to reproduce S_{2n}
- \rightarrow N=20 and Z=20 gaps overestimated!

Optical Potentials Based on the Nuclear Self-energy

Self-Consistent Green's Function Approach

Nucleon elastic scattering

p-¹⁶O phase shifts - positive parity waves

[C.B., B.Jennings, Phys. Rev. C**72**, 014613 (2005)]

AV18 interaction

•The phase shift are in agreement with the experiment!

BUT does not reproduce phase shifts and bound state energies at the same time → need for improved H / 3NF

Non-MF resonances "OK"

Convergence of Ab-Initio Calculated Optical Potentials

S. Waldecker, CB, W.Dickhoff – Phys. Rev. C84, 034616 (2011)

Correlations in sp energies and strengths

Single particle energies - driven by tensor + 3N force... (see works by T. Otsuka PRL2005, 2010)

Quenching of spectral strength (spect. factor) - driven by coupling to collective modes...

•Role of tensor force??

•Collective, charge exchange

effects???

JNIVERSITY OF

Microscopic Optical Potential from FRPA

- absorption away from E_F is enhanced by the tensor force
- little effects from charge exchange (e.g. p-48Ca <-> n-48Sc)

J_w: integral over the imaginary opt. pot (overall absorption)

S. Waldecker, CB, W.Dickhoff – Phys. Rev. C84, 034616 (2011)

- A. Cipollone, A. Rios
- V. Somà, T. Duguet
- A. Carbone
- P. Navratil
- A. Polls
- W.H. Dickhoff, S. Waldecker
- D. Van Neck, M. Degroote
- M. Hjorth-Jensen

Conclusions

• <u>The GORKOV formulation permits for the first time *ab-initio* calculations of binding energies, spectral quantities, and so on... for <u>open-shell semi-magic nuclei</u>: this means MANY of THEM, in the MID-MASS region, and previously out of reach for ab-initio.</u>

• Consistent prediction of s.p, spectral distribution and scattering

•<u>Performance of chiral nuclear forces for finite nuclei</u>:

- Leading three nucleon forces (NNLO) are ALWAYS needed to explain the proper trends. They equally set the driplines of O, N, and F.
- N, O, F region: binding energies are predicted OK (<1%), radii, small
- Ar, K, Ca, Sc, Ti region: overbound by ~1MeV/A.
- N=20, Z=20 gaps and separations among major shells are exaggerated.
- Absorption in optical potentials above the girant resonances dominated by tensor force.

Evolved chiral 3NF and the Ca isotopes

A. Cipollone, CB, V.Somà, P. Navratil

only interactions and by including induced and full 3NF. Experiment are charge radii.

		2NF only	2+3NF(ind.)	2+3NF(full)	Experiment
	¹⁶ O:	2.10	2. 41	2.38	2.718±0.210 [19]
[nucl-th]	⁴⁴ Ca:	2.48	2.93	2.94	3.520±0.005 [20]

CB et al., arXiv:1211.3315 [

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm⁻¹) N2LO (Λ = 400Mev/c) chiral 3N interaction evolved (2.0fm⁻¹)

Single nucleon transfer in the oxygen chain

[F. Flavigny et al, PRL110, 122503 (2013)]

\rightarrow Analysis of ¹⁴O(d,t)¹³O and ¹⁴O(d,³He)¹³N transfer reactions @ SPIRAL

Reaction	<i>E</i> * (MeV)	J^{π}	R ^{HFB} (fm)	<i>r</i> ₀ (fm)	$C^2 S_{exp}$ (WS)	$\frac{C^2 S_{\rm th}}{0p + 2\hbar\omega}$	R _s (WS)	$C^2 S_{exp}$ (SCGF)	$C^2 S_{\text{th}}$ (SCGF)	<i>R</i> _s (SCGF)
14 O (<i>d</i> , <i>t</i>) 13 O	0.00	$3/2^{-}$	2.69	1.40	1.69 (17)(20)	3.15	0.54(5)(6)	1.89(19)(22)	3.17	0.60(6)(7)
14 O (<i>d</i> , 3 He) 13 N	0.00	$1/2^{-}$	3.03	1.23	1.14(16)(15)	1.55	0.73(10)(10)	1.58(22)(2)	1.58	1.00(14)(1)
	3.50	$3/2^{-}$	2.77	1.12	0.94(19)(7)	1.90	0.49(10)(4)	1.00(20)(1)	1.90	0.53(10)(1)
$^{16}O(d, t)$ ^{15}O	0.00	$1/2^{-}$	2.91	1.46	0.91(9)(8)	1.54	0.59(6)(5)	0.96(10)(7)	1.73	0.55(6)(4)
16 O (<i>d</i> , 3 He) 15 N [19,20]	0.00	$1/2^{-}$	2.95	1.46	0.93(9)(9)	1.54	0.60(6)(6)	1.25(12)(5)	1.74	0.72(7)(3)
	6.32	$3/2^{-}$	2.80	1.31	1.83(18)(24)	3.07	0.60(6)(8)	2.24(22)(10)	3.45	0.65(6)(3)
18 O (<i>d</i> , 3 He) 17 N [21]	0.00	$1/2^{-}$	2.91	1.46	0.92(9)(12)	1.58	0.58(6)(10)			

- Overlap functions and strengths from GF
 - Rs independent of asymetry

