The Hoyle state and its relatives: The C12 continuum

Thomas Neff

"Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives"

> TRIUMF, Vancouver, Canada February 21, 2014

Overview

Unitary Correlation Operator Method

Fermionic Molecular Dynamics

Cluster States in ¹²C

- FMD and microscopic cluster model
- electron scattering data form factors

Resonances and Scattering States in ¹²C

- include ⁸Be+ α configurations
- R-matrix method

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

 strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

central correlations

 strong dependence on the orientation of the spins due to the tensor force

tensor correlations

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

 strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

central correlations

 strong dependence on the orientation of the spins due to the tensor force

tensor correlations

the nuclear force will induce strong short-range correlations in the nuclear wave function

Universality of short-range correlations **Two-body densities in** A = 2, 3, 4 Nuclei — AV8'

0.2

0.1

0

momentum space S = 1, T = 0

- normalize two-body density in coordinate space at r=1.0 fm
- normalized two-body densities in coordinate space are identical at short distances for all nuclei
- use the **same** normalization factor in momentum space high momentum tails agree for all nuclei

Feldmeier, Horiuchi, Neff, Suzuki, Phys. Rev. C 84, 054003 (2011)

Unitary Correlation Operator Method

Correlation Operator

• induce short-range (two-body) central and tensor correlations into the many-body state

$$\mathcal{L} = \mathcal{L}_{\Omega} \mathcal{L}_{r} = \exp\left[-i\sum_{i < j} \mathcal{L}_{\Omega, ij}\right] \exp\left[-i\sum_{i < j} \mathcal{L}_{r, ij}\right] \quad , \quad \mathcal{L}^{\dagger} \mathcal{L} = 1$$

 correlation operator should conserve the symmetries of the Hamiltonian and should be of finite-range, correlated interaction phase shift equivalent to bare interaction by construction

Correlated Operators

• correlated operators will have contributions in higher cluster orders

$$\hat{C}^{\dagger} \hat{O} \hat{C} = \hat{Q}^{[1]} + \hat{Q}^{[2]} + \hat{Q}^{[3]} + \dots$$

 two-body approximation: correlation range should be small compared to mean particle distance

Correlated Interaction

$$\underline{C}^{\dagger} (\underline{T} + \underline{V}) \underline{C} = \underline{T} + \underline{V}_{UCOM} + \underline{V}_{UCOM}^{[3]} + \dots$$

Unitary Correlation Operator Method Correlations and Energies

central correlator C_r shifts density out of the repulsive core tensor correlator C_{Ω} aligns density with spin orientation

Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

Unitary Correlation Operator Method Correlations and Energies

both central and tensor correlations are essential for binding

Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

- states close to one-nucleon, two-nucleon or cluster thresholds can have well developed halo or cluster structure
- >> these are hard to tackle in the harmonic oscillator basis

Fermionic

Slater determinant

$$\boldsymbol{Q} \rangle = \mathcal{A}\left(\left| \boldsymbol{q}_1 \right\rangle \otimes \cdots \otimes \left| \boldsymbol{q}_A \right\rangle \right)$$

• antisymmetrized A-body state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 Antisymmetrization

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle st

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 see also Antisymmetrized Molecular Dynamics

Horiuchi, Kanada-En'yo, Kimura, . . .

Antisymmetrization

$$\begin{split} \mathcal{C}^{\dagger}(\mathcal{I} + \mathcal{V})\mathcal{C} &= \mathcal{I} & \text{one-body kinetic energy} \\ &+ \sum_{ST} \hat{V}_{c}^{ST}(r) + \frac{1}{2} (p_{r}^{-2} \, \hat{V}_{p^{2}}^{ST}(r) + \hat{V}_{p^{2}}^{ST}(r) p_{r}^{-2}) + \hat{V}_{l^{2}}^{ST}(r) \mathcal{I}^{2} \\ & \text{central potentials} \\ &+ \sum_{T} \hat{V}_{ls}^{T}(r) \mathcal{I} \cdot \mathbf{s} + \hat{V}_{l^{2}ls}^{T}(r) \mathcal{I}^{2} \mathcal{I} \cdot \mathbf{s} \\ & \text{spin-orbit potentials} \\ &+ \sum_{T} \hat{V}_{t}^{T}(r) \mathcal{S}_{12}(\mathbf{r}, \mathbf{r}) + \hat{V}_{trp_{\alpha}}^{T}(r) p_{r} \mathcal{S}_{12}(\mathbf{r}, \mathbf{p}_{\alpha}) + \hat{V}_{tll}^{T}(r) \mathcal{S}_{12}(\mathbf{l}, \mathbf{l}) + \\ & \hat{V}_{tp_{\alpha}p_{\alpha}}^{T}(r) \mathcal{S}_{12}(\mathbf{p}_{\alpha}, \mathbf{p}_{\alpha}) + \hat{V}_{l^{2}tp_{\alpha}p_{\alpha}}^{T}(r) \mathcal{I}^{2} \mathcal{S}_{12}(\mathbf{p}_{\alpha}, \mathbf{p}_{\alpha}) \end{split}$$

part of the interaction

Weber, Feldmeier, Hergert, Neff, arXiv:1311.7610

FMD PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- combine VAP with constraints on radius, dipole moment, quadrupole moment, . . . to generate additional configurations

$$\mathop{\mathbb{P}}_{\sim}^{\pi}=\frac{1}{2}(1+\pi\underset{\sim}{\Pi})$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}^{*}(\Omega) \stackrel{R}{\sim} (\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- combine VAP with constraints on radius, dipole moment, quadrupole moment, . . . to generate additional configurations

Multiconfiguration Calculations

• **diagonalize** Hamiltonian in a set of projected intrinsic states

$$\left\{ \left| \begin{array}{c} \mathbf{Q}^{(a)} \right\rangle, \quad a = 1, \dots, N \right\}$$

$$\underset{\sim}{P^{\pi}} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3\Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$\sum_{K'b} \langle \mathbf{Q}^{(a)} | \mathcal{H} \mathcal{P}_{KK'}^{j^{\pi}} \mathcal{P}^{\mathbf{P}=0} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha} = E^{j^{\pi}\alpha} \sum_{K'b} \langle \mathbf{Q}^{(a)} | \mathcal{P}_{KK'}^{j^{\pi}} \mathcal{P}^{\mathbf{P}=0} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha}$$

• NCSM allows good description of short-range physics, but long-range behavior suffers from harmonic oscillator asymptotics

FMD FMD vs NCSM model spaces

- NCSM allows good description of short-range physics, but long-range behavior suffers from harmonic oscillator asymptotics
- FMD allows to describe long-range physics by superposition of localized cluster configurations, but limited in description of short-range physics

Cluster States in ¹²C

Astrophysical Motivation

 Helium burning: triple alpha-reaction

Structure

- Is the Hoyle state a pure α -cluster state ?
- Other excited 0⁺ and 2⁺ states
- **\rightarrow** Compare FMD results to microscopic α -cluster model
- Intrinsic structure from two-body densities
- >> Analyze wave functions in harmonic oscillator basis

Cluster States in ¹²C Microscopic α -Cluster Model

 $R_{12} = (2, 4, \dots, 10) \, \text{fm}$ $R_{13} = (2, 4, \dots, 10) \, \text{fm}$ $\cos(\vartheta) = (1.0, 0.8, \dots, -1.0)$

alltogether 165 configurations

Kamimura, Nuc. Phys. **A351** (1981) 456 Funaki et al., Phys. Rev. C **67** (2003) 051306(R)

Basis States

• describe Hoyle State as a system of 3 ⁴He nuclei

 $\begin{aligned} \Psi_{3\alpha}(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}); JMK\pi \rangle &= \\ P^{J}_{MK}P^{\pi}\mathcal{A}\left\{ \left| \psi_{\alpha}(\mathbf{R}_{1}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{2}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{3}) \right\rangle \right\} \end{aligned}$

Volkov Interaction

- simple central interaction
- parameters adjusted to give reasonable α binding energy and radius, $\alpha - \alpha$ scattering data, adjusted to reproduce ¹²C ground state energy
- \mathbf{X} only reasonable for ⁴He, ⁸Be and ¹²C nuclei

'BEC' wave functions

- interpretation of the Hoyle state as a Bose-Einstein Condensate of α-particles by Funaki, Tohsaki, Horiuchi, Schuck, Röpke
- same interaction and α -cluster parameters used

Basis States

Cluster States in¹²C

FMD

- 20 FMD states obtained in Variation after Projection on 0⁺ and 2⁺ with constraints on the radius
- 42 FMD states obtained in Variation after Projection on parity with constraints on radius and quadrupole deformation
- 165 α -cluster configurations
- projected on angular momentum and linear momentum

Interaction

- UCOM interaction (I_9 =0.30 fm³ with phenomenological two-body correction term (momentumdependent central and spin-orbit) fitted to doublymagic nuclei
- not tuned for α - α scattering or ¹²C properties

Cluster States in¹²C Comparison

	Exp ¹	Exp ²	FMD	α -cluster	'BEC' ³
$E(0_{1}^{+})$	-92.16		-92.64	-89.56	-89.52
$E^{*}(2_{1}^{+})$	4.44		5.31	2.56	2.81
Ε(3α)	-84.89		-83.59	-82.05	-82.05
$E(0_{2}^{+}) - E(3\alpha)$	0.38		0.43	0.38	0.26
$E(0_{3}^{+}) - E(3\alpha)$	(3.0)	2.7(3)	2.84	2.81	
$E(2^{+}_{2}) - E(3\alpha)$	(3.89)	2.76(11)	2.77	1.70	
$r_{\rm charge}(0^+_1)$	2.47(2)		2.53	2.54	
$r(0^+_1)$			2.39	2.40	2.40
$r(0^{+}_{2})$			3.38	3.71	3.83
$r(0_{3}^{+})$			4.62	4.75	
$r(2^+_1)$			2.50	2.37	2.38
$r(2^{+}_{2})$			4.43	4.02	
$M(E0, 0_1^+ \rightarrow 0_2^+)$	5.4(2)		6.53	6.52	6.45
$B(E2, 2^+_1 \rightarrow 0^+_1)$	7.6(4)		8.69	9.16	
$B(E2, 2_1^+ \to 0_2^+)$	2.6(4)		3.83	0.84	
$B(E2,2^{+}_{2}\rightarrow 0^{+}_{1})$		0.73(13)	0.46	1.99	

experimental situation for 0⁺ and 2⁺ states above threshold still not completely settled

¹ Ajzenberg-Selove, Nuc. Phys. **A506**, 1 (1990) ² Itoh et al., Nuc. Phys. **A738**, 268 (2004), Zimmermann et al., Phys. Rev. Lett. **110**, 152502 (2013)

³ Funaki et al., Phys. Rev. C **67**, 051306(R) (2003)

Cluster States in¹²C Comparison

	Exp ¹	Exp ²	FMD	α -cluster	'BEC' ³
$E(0_{1}^{+})$	-92.16		-92.64	-89.56	-89.52
$E^{*}(2_{1}^{+})$	4.44		5.31	2.56	2.81
Ε(3α)	-84.89		-83.59	-82.05	-82.05
$E(0_{2}^{+}) - E(3\alpha)$	0.38		0.43	0.38	0.26
$E(0_{3}^{+}) - E(3\alpha)$	(3.0)	2.7(3)	2.84	2.81	
$E(2^{+}_{2}) - E(3\alpha)$	(3.89)	2.76(11)	2.77	1.70	
$r_{\rm charge}(0^+_1)$	2.47(2)		2.53	2.54	
$r(0^+_1)$			2.39	2.40	2.40
$r(0^{+}_{2})$			3.38	3.71	3.83
$r(0_{3}^{+})$			4.62	4.75	
$r(2^+_1)$			2.50	2.37	2.38
$r(2^{+}_{2})$			4.43	4.02	
$M(E0, 0_1^+ \rightarrow 0_2^+)$	5.4(2)		6.53	6.52	6.45
$B(E2, 2^+_1 \rightarrow 0^+_1)$	7.6(4)		8.69	9.16	
$B(E2, 2_1^+ \to 0_2^+)$	2.6(4)		3.83	0.84	
$B(E2, 2^{+}_{2} \rightarrow 0^{+}_{1})$		0.73(13)	0.46	1.99	

experimental situation for 0⁺ and 2⁺ states above threshold still not completely settled

calculated in bound state approximation

¹ Ajzenberg-Selove, Nuc. Phys. A506, 1 (1990)
 ² Itoh et al., Nuc. Phys. A738, 268 (2004), Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013)

³ Funaki et al., Phys. Rev. C **67**, 051306(R) (2003)

Cluster States in ¹²C Monopole Matrix Element revisited

- *M*(*E*0) determines the pair decay width
- model-independent self-consistent determination of transition formfactor/density in DWBA
- data at high momentum transfer necessary to constrain matrix element $M(E0) = 5.47 \pm 0.09 e^2 \text{fm}^2$

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. **105** (2010) 022501

Cluster States in ¹²C Important Configurations

• Calculate the overlap with FMD basis states to find the most important contributions to the Hoyle state

FMD basis states are not orthogonal!

 0^+_2 and 0^+_3 states have no rigid intrinsic structure

Thomas Neff — TRIUMF, 02/21/14

Cluster Model

$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α's to extract "αα" correlations
- (substracted) two-body density peaks at 3.5 fm
- consistent with
 compact triangular
 structure

Cluster States in ¹²C Two-body Densities and Intrinsic Structure

Cluster Model

$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α 's to extract " α - α correlations"
- Hoyle state two-body density peaks at 5 fm, extended tail
- consistent with triangular structure
- tail in 2⁺₂ and 4⁺₂ states more pronounced
- admixture of open triangle configurations

Cluster States in ¹²C Two-body Densities and Intrinsic Structure

Cluster Model

$$\rho^{(2)}(r) = \langle \Psi \big| \sum_{i < j} \delta(\mathbf{r} - \mathbf{r}_{ij}) \big| \Psi \rangle$$

- substract contributions from α's to extract "αα" correlations
- two-body density peaks at 4.5 fm and 10 fm
- consistent with
 open triangle/chain
 configuration

Cluster States in ¹²C Harmonic Oscillator NħΩ Excitations

Y. Suzuki et al, Phys. Rev. C 54, 2073 (1996).

$$\operatorname{Occ}(N) = \langle \Psi \left| \delta \left(\sum_{i} (\mathcal{H}_{i}^{HO} / \hbar \Omega - 3/2) - N \right) \right| \Psi \rangle$$

Include ⁸**Be-** α **continuum**

How to treat the ^{12}C continuum above the 3- α threshold ?

- In principle it should be described as a three-body continuum
- However ⁸Be+ α configurations are lower in energy than 3- α configurations up to pretty large hyperradii
- Approximation: consider ⁸Be(0⁺) and ⁸Be(2⁺) (and additional ⁸Be pseudo states) as bound states
- Could be considered as a microscopic CDCC approach

alpha-cluster model calculations with continuum:

Descouvemont, Baye, Phys. Rev. **C36**, 54 (1987) Arai, Phys. Rev. **C74**, 064311 (2006) Vasilevsky *et al.*, Phys. Rev. **C85**, 034318 (2012)

⁸Be wave functions

• α - α configurations up to 9 fm distance, project on 0⁺ and 2⁺, M = 0, 1, 2

$$\left|{}^{8}\text{Be}_{I,K}\right\rangle = P_{K0}^{I}\sum_{i}\left\{\left|{}^{4}\text{He}(-R_{i}/2\mathbf{e}_{z})\right\rangle \otimes \left|{}^{4}\text{He}(R_{i}/2\mathbf{e}_{z})\right\}c_{i}^{J}\right\}\right\}$$

• reproduces ground state energy within 50 keV compared to full calculation

¹²C configurations

- ⁸Be(0⁺,2⁺) and α at distance R
- ⁸Be(2⁺) can have different orientations with respect to distance vector
- ⁸Be(0⁺,2⁺)+ α configurations have to be projected on total angular momentum

⁸Be_{*I,K*}, ⁴He; *R*; *JM*
$$\rangle = P_{MK}^{J} \left\{ \left| {}^{8}Be_{I,K}(-1/3R\mathbf{e}_{z}) \right\rangle \otimes \left| {}^{4}He(2/3R\mathbf{e}_{z}) \right\rangle \right\}$$

Cluster Model: ⁸Be-α Continuum GCM Energy Surfaces

- energy surfaces contain localization energy for relative motion of ⁸Be and α
- 2⁺ energy surface depends strongly on orientation of ⁸Be 2⁺ state K = 2 most attractive

Cluster Model: ⁸Be-α Continuum Full calculation: Microscopic *R*-matrix Method

Model Space

- Internal region in the cluster model: 3- α configurations on a grid
- External region: ⁸Be(0⁺, 2⁺)- α configurations
- Channel radius has to be large: only Coulomb interaction between ⁸Be and α and Coulomb coupling between different ⁸Be channels should be small
- Check that results are independent from channel radius: used a = 16.5 fm here

Scattering Solutions

- Obtain scattering matrix using multichannel microscopic *R*-matrix approach Descouvement, Baye, Phys. Rept. 73, 036301 (2010)
- Diagonal phase shifts and inelasticity parameters: $S_{ii} = \eta_i \exp\{2i\delta_i\}$
- Eigenphases: $S = V^{-1}DV$, $D_{\alpha\alpha} = \exp \{2i\delta_{\alpha}\}$

Slater determinants and RGM wave functions

- Divide model space into internal and external region at channel radius α
- In internal region wave function is described microscopically with FMD Slater determinants
- In external region wave function is considered as a system of two point-like clusters
- (Microscopic) cluster wave function Slater determinant

$$\left| Q^{ab}(\mathbf{R}) \right\rangle = \frac{1}{\sqrt{c_{ab}}} \mathcal{A} \left\{ \left| Q^{a} \left(-\frac{m_{b}}{m_{a}+m_{b}} \mathbf{R} \right) \right\rangle \otimes \left| Q^{b} \left(\frac{m_{a}}{m_{a}+m_{b}} \mathbf{R} \right) \right\rangle \right\}$$

 Projection on total linear momentum decouples intrinsic motion, relative motion of clusters and total center-of-masss

$$|Q^{ab}(\mathbf{R});\mathbf{P}=0\rangle = \int d^{3}r \,\tilde{\Gamma}(\mathbf{r}-\mathbf{R}) |\Phi^{ab}(\mathbf{r})\rangle \otimes |\mathbf{P}_{cm}=0\rangle$$

using RGM basis states

$$\langle \boldsymbol{\rho}, \boldsymbol{\xi}_{a}, \boldsymbol{\xi}_{b} | \Phi^{ab}(\mathbf{r}) \rangle = \frac{1}{\sqrt{c_{ab}}} \mathcal{A} \left\{ \delta(\boldsymbol{\rho} - \mathbf{r}) \Phi^{a}(\boldsymbol{\xi}_{a}) \Phi^{b}(\boldsymbol{\xi}_{b}) \right\}$$

RGM norm kernel

$$m^{ab}(\mathbf{r},\mathbf{r}') = \langle \Phi^{ab}(\mathbf{r}) | \Phi^{ab}(\mathbf{r}') \rangle$$

• Relative motion in Slater determinant described by Gaussian

$$\tilde{\Gamma}(\mathbf{r} - \mathbf{R}) = \left(\frac{\beta_{\text{rel}}}{\pi^2 a_{\text{rel}}}\right)^{3/4} \exp\left(-\frac{(\mathbf{r} - \mathbf{R})^2}{2a_{\text{rel}}}\right)$$

with

$$a_{\rm rel} = \frac{a_a A_b + a_b A_a}{A_a A_b}, \quad \beta_{\rm rel} = \frac{a_a a_b}{a_a A_b + a_b A_a}$$

• Overlap of full wave function with RGM cluster basis

$$\psi(\mathbf{r}) = \int \mathrm{d}^3 r' \, n^{1/2}(\mathbf{r}, \mathbf{r}') \langle \, \Phi(\mathbf{r}') \, \big| \, \Psi \, \rangle$$

• Match asymptotics to Whittaker, outgoing Coulomb or Coulomb functions

$$\psi_{b}(r) = A \frac{1}{r} W_{-\eta,L+1/2}(2\kappa r), \qquad \psi_{Gamow}(r) = A \frac{1}{r} O_{L}(\eta, kr)$$
$$\psi_{scatt}(r) = \frac{1}{r} \left\{ I_{L}(\eta, kr) - e^{2i\delta} O_{L}(\eta, kr) \right\}$$

with

$$\kappa = \sqrt{-2\mu E_b}, \quad k = \sqrt{2\mu E}, \quad \eta = \mu \frac{Z_a Z_b e^2}{k}$$

Thomas Neff — TRIUMF, 02/21/14

Gamow states

	E [MeV]	Γ[MeV]	
0^{+}_{2}	0.29	$1.78 \cdot 10^{-5}$	
0_{3}^{+}	4.11	0.12	
0_{4}^{+}	4.76	1.57	(?)

- non-resonant background
- strong coupling between ⁸Be(0⁺) and ⁸Be(2⁺) channel at 4.1 MeV
- Hoyle state not resolved in phase shifts
- stability of broad resonance with respect to channel radius ?

2⁺ **Phase shifts**

. . .

3⁻ Phase shifts

Cluster Model: ⁸Be- α Continuum

Overlap functions

- Ground state overlap with ${}^8\text{Be}(0^+) + \alpha$ and ${}^8\text{Be}(2^+) + \alpha$ configurations of similar magnitude
- Hoyle state overlap dominated by ${}^{8}Be(0^{+})+\alpha$ configurations, large spatial extension

Work in Progress: FMD calculation with ⁸Be- α Continuum

UCOM interaction

- Correlation functions from SRG $\lambda = 1.5$ fm⁻¹
- Increase strength of spin-orbit force to partially account for omitted three-body forces

⁸Be- α Continuum

- To get a reasonable description of ⁸Be it is essential to include polarized configurations
- Calculate strength distributions
- ► Investigate non-cluster states: non-natural parity states, T = 1states, M1 transitions, ¹²B and ¹²N β -decay into ¹²C, ...

FMD/Cluster Model: ⁸Be-α Continuum Spectra (preliminary)

• FMD: ⁸Be wave functions still relatively poor

Summary

Unitary Correlation Operator Method

• Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

• Gaussian wave-packet basis contains HO shell model and Brink-type cluster states

Cluster States in ¹²C

- Consistent description of ground state band and clustered states including the Hoyle state
- Test Hoyle state structure with electron scattering

The ¹²C Continuum

- Include ⁸Be(0⁺,2⁺)+ α continuum in cluster model
- Hoyle state can be understood as ${}^{8}Be(0^{+})+\alpha$
- First results for FMD with continuum

Thanks to my collaborators:

Hans Feldmeier (GSI), Katharine Henninger (GSI), Heiko Hergert (OSU), Wataru Horiuchi (Hokkaido), Lukas Huth (GSI), Karlheinz Langanke (GSI), Robert Roth (TUD), Yasuyuki Suzuki (Niigata), Dennis Weber (GSI)

Thomas Neff - TRIUMF, 02/21/14